Вход на сайт

Зарегистрировавшись на сайте Вы сможете добавлять свои материалы






Схемы самодельных блоков питания


Схемы самодельных блоков питания


Стабилизированный лабораторный блок питания на 1,3-30V при токе 0-5A

Приводится принципиальная схема самодельного блока питания позволяющего получить напряжения от 1,3В до 30В при токах от 0А до 5А, работает в режиме стабилизации напряжения и тока.

3 721 0

Схема лабораторного блока питания для налаживания усилителей ЗЧ

В радиолюбительской практике нередки случаи выхода из строя мощного УМЗЧ в процессе его налаживания или ремонта. При этом, как правило, бывают повреждены самые дорогостоящие детали - мощные выходные транзисторы. Чтобы избежать таких последствий, необходим специализированный блок питания ...

0 453 0

Сетевой блок питания на 1,5В для электромеханических часов

Электромеханические часы обычно питаются от элемента на 1,5V. Его можно заменить сетевым источником, схема которого показана здесь. В ней в качестве стабилитрона используется ИК-светодиод с прямым напряжением около 1,5V. Механизм часов питается от этого напряжения. Рис. 1. Схема сетевого ...

0 273 0

Схемы микромощных сетевых блоков питания на основе микросхемы PT4515

Три варианта сетевых бестрансформаторных микромощных источников питания с выходным током единицы-десятки миллиампер на основе микросхемы РТ4515. Эта микросхема широко применяется в светодиодных лампах. Для управления симисторами, три-нисторами, полевыми транзисторами и т. п., коммутирующими ...

1 1435 0

Схема импульсного сетевого блока питания для усилителей НЧ на 100-500Вт (IR2153, IR2155)

Для получения полноценного усилителя мощности НЧ требуется хороший источник питания, приведена схема простого блока питания для УМЗЧ. От параметров источника питания качество звучания зависит не чуть не меньше, чем от самого усилителя и относится халатно к его изготовлению не следует ...

2 2108 2

Бестрансформаторный источник питания (IRF730, 7805, VN2460N8, SR037)

Принципиальная схема простого бестрансформаторного блока питания из доступных деталей, два варианта. В своих конструкциях радиолюбители очень часто применяют бестрансформаторные маломощные источники питания. Обычно, они представляют собой своеобразный симбиоз параметрического стабилизатора ...

0 1118 0

Блок питания на 9В с таймером (CD4069, NJM4020)

Схема простого блока питания, который может отключаться от сети через некоторое время после включения. Это время устанавливается плавно (переменным резистором) в пределах от 10 минут до 2 часов. Блок можно использовать там, где нужно выключать какую-то батарейную аппаратуру, питающуюся от сетевого ...

1 565 0

Сетевой бестрансформаторный блок питания на 9В

Если сейчас в разных устройствах с батарейным питанием используются обычно батареи напряжением ЗВ из двух элементов. В советское время везде была «Крона» на 9В, и в пультах ДУ, и в настольных электронных часах с ЖКИ. Кстати, насчет электронных часов, у автора именно такие, на ЖКИ и с питанием от ...

1 892 0

Самодельный блок питания на транзисторах (0-16В, 3А)

Самодельный блок питания, схема выполнена на транзисторах и обеспечивает регулируемое напряжение 0-16В при токе до 3А. Я перепробовал несколько разных выпрямителей. На рисунке приведен последний блок питания, которым пользовался, как радиолюбитель, и к которому не предъявлял высоких требований. На схеме трансформатор тип 700 - трансформатор блокинг-генератора блока питания автомобильной радиостанции АРС ...

1 2782 0

Простой лабораторный блок питания 0-24В (КТ801, КТ803)

В радиолюбительской практике всегда необходим лабораторный источник питания с широким диапазоном выходных напряжений и достаточным запасом тока нагрузки. Предлагается одна из таких несложных конструкций, позволяющая подключать несколько разных устрой

Как работают схемы импульсного источника питания (SMPS)

SMPS - это аббревиатура от слова Switch Mode Power Supply. Название ясно указывает на то, что эта концепция имеет какое-то или полностью отношение к импульсам или переключению используемых устройств. Давайте узнаем, как адаптеры SMPS работают для преобразования сетевого напряжения в более низкое напряжение постоянного тока.

Преимущество топологии SMPS

В адаптерах SMPS идея состоит в том, чтобы переключить входное напряжение сети на первичную обмотку трансформатора, чтобы на вторичной обмотке трансформатора можно было получить более низкое значение постоянного напряжения.

Однако вопрос в том, то же самое можно сделать с обычным трансформатором, так зачем нужна такая сложная конфигурация, когда функционирование может быть просто реализовано через обычные трансформаторы?

Что ж, концепция была разработана именно для того, чтобы исключить использование тяжелых и громоздких трансформаторов с более эффективными версиями схем питания SMPS.

Хотя принцип работы очень похож, результаты сильно различаются.

Наше сетевое напряжение также представляет собой пульсирующее напряжение или переменный ток, который обычно подается в обычный трансформатор для необходимых преобразований, но мы не можем сделать трансформатор меньше по размеру даже при токе всего 500 мА.

Причиной этого является очень низкая частота наших сетевых входов переменного тока.
При 50 Гц или 60 Гц значение чрезвычайно низкое для реализации их на выходах с большим постоянным током с использованием трансформаторов меньшего размера.

Это связано с тем, что при уменьшении частоты потери на вихревые токи на намагниченность трансформатора увеличиваются, что приводит к огромным потерям тока из-за тепла, и, следовательно, весь процесс становится очень неэффективным.

.

Как спроектировать схему источника бесперебойного питания (ИБП)

В этом кратком руководстве мы узнаем, как спроектировать индивидуальную схему ИБП в домашних условиях с использованием обычных компонентов, таких как несколько микросхем NAND и несколько реле.

Что такое ИБП

ИБП, обозначающие источник бесперебойного питания, представляют собой инверторы, предназначенные для бесперебойной подачи сетевого питания переменного тока на подключенную нагрузку без малейшего прерывания, независимо от внезапных сбоев в подаче электроэнергии, колебаний или даже отключения электроэнергии.

ИБП становится полезным для ПК и другого подобного оборудования, которое требует обработки критически важных данных и не может позволить себе отключение питания от сети во время важной операции обработки данных.

Для этого оборудования ИБП становится очень удобным благодаря его мгновенному резервному питанию нагрузки и предоставлению пользователю достаточно времени для сохранения важных данных компьютера до тех пор, пока фактическое сетевое питание не будет восстановлено.

Это означает, что ИБП должен очень быстро переключаться с сети на инвертор (резервный режим) и наоборот во время возможного сбоя в электросети.

В этой статье мы узнаем, как сделать простой ИБП со всеми минимальными функциями, гарантирующими, что он соответствует указанным выше принципам и обеспечивает пользователя бесперебойным питанием хорошего качества на протяжении всей работы.

Этапы ИБП

Базовая схема ИБП будет иметь следующие основные этапы:

1) Схема инвертора

2) Батарея

3) Схема зарядного устройства

4) Этап переключающей цепи с использованием реле или других такие устройства, как симисторы или SSR.

Теперь давайте узнаем, как можно собрать и интегрировать вышеупомянутые схемные каскады для реализации достаточно приличной системы ИБП.

Блок-схема

Упомянутые функциональные этапы источника бесперебойного питания можно подробно понять с помощью следующей блок-схемы:

Здесь мы можем видеть, что основная функция переключения ИБП выполняется парой ступеней реле DPDT. .

Оба реле DPDT питаются от источника питания 12 В переменного тока в постоянный или адаптера.

Слева можно увидеть реле DPDT, управляющее зарядным устройством. Зарядное устройство аккумулятора получает питание, когда сеть переменного тока доступна через верхние контакты реле, и подает вход для зарядки аккумулятора через нижние контакты реле. При отключении сети переменного тока контакты реле переключаются на замыкающие. Верхние контакты реле отключают питание зарядного устройства, а нижние контакты теперь соединяют аккумулятор с инвертором, чтобы начать работу в режиме инвертора.

Контакты реле с правой стороны используются для переключения с сети переменного тока на сеть переменного тока инвертора и наоборот.

Практическая конструкция ИБП

В следующем обсуждении мы попытаемся понять и разработать практическую схему ИБП.

1) Инвертор.

Так как ИБП имеет дело с критически важными и чувствительными электронными приборами, задействованный каскад инвертора должен иметь разумную форму волны, другими словами, обычный прямоугольный инвертор не может быть рекомендован для ИБП, и поэтому для нашей конструкции мы делаем уверен, что об этом условии правильно позаботятся.

Хотя я разместил на этом веб-сайте множество схем инвертора, включая сложные типы синусоидальных сигналов ШИМ, здесь мы выбираем совершенно новую конструкцию, чтобы сделать статью более интересной, и добавляем новую схему инвертора в список.

Конструкция ИБП использует только единственная микросхема IC 4093 и, тем не менее, способна выполнять на выходе хорошо модифицированные синусоидальные функции ШИМ.

Список деталей

  • N1 --- N3 вентили NAND от IC 4093
  • Mosfets = IRF540
  • Трансформатор = 9-0-9V / 10 ампер / 220V или 120V
  • R3 / R4 = 220k pot
  • C1 / C2 = 0.1 мкФ / 50 В
  • Все резисторы имеют номинал 1 кОм 1/4 Вт

Работа схемы инвертора

IC 4093 состоит из 4 вентилей NAND типа Шмидта, эти вентили сконфигурированы надлежащим образом и расположены в показанной выше схеме инвертора для реализации необходимых технические характеристики.

Один из вентилей N1 настроен как генератор для генерации 200 Гц, в то время как другой вентиль N2 подключен как второй генератор для генерации импульсов 50 Гц.

Выход N1 используется для управления подключенными МОП-транзисторами с частотой 200 Гц, в то время как затвор N2 вместе с дополнительными затворами N3 / N4 поочередно переключает МОП-транзисторы с частотой 50 Гц.

Это сделано для того, чтобы МОП-транзисторы никогда не могли проводить одновременно от выхода N1.

Выходы от N3, N4 разбивают 200 Гц от N1 на чередующиеся блоки импульсов, которые обрабатываются трансформатором для создания переменного тока с ШИМ при заданном напряжении 220 В.

На этом этап инвертора в нашем руководстве по изготовлению ИБП завершается.

На следующем этапе объясняется схема переключающего реле и то, как вышеуказанный инвертор должен быть соединен с переключающими реле для облегчения операций автоматического резервного копирования инвертора и зарядки аккумулятора во время сбоя в электросети и наоборот.

Ступень переключения реле и схема зарядного устройства батареи

На изображении ниже показано, как трансформаторная часть схемы инвертора может быть сконфигурирована с несколькими реле для реализации автоматического переключения для предлагаемой конструкции ИБП.

На рисунке также показана простая схема автоматического зарядного устройства с использованием IC 741 в левой части схемы.

Сначала давайте узнаем, как подключены переключающие реле, а затем мы можем перейти к объяснению зарядного устройства.

Всего на этом этапе используются 3 набора реле:

1) 2 реле SPDT в форме RL1 и RL2

2) Одно реле DPDT как RL3a и RL3b.

RL1 соединен со схемой зарядного устройства и управляет отсечкой высокого / низкого уровня заряда для батареи и определяет, когда батарея готова к использованию для инвертора, а когда ее нужно удалить.

SPDT RL2 и DPDT (RL3a и RL3b) используются для мгновенного переключения во время сбоя питания и восстановления.Контакты RL2 используются для подключения или отключения центрального отвода трансформатора с аккумулятором в зависимости от наличия или отсутствия сети.

RL3a и RLb, которые представляют собой два набора контактов реле DPDT, становятся ответственными за переключение нагрузки через сеть инвертора или сеть во время перебоев в подаче электроэнергии или периодов восстановления.

Катушки RL2 и DPDT RL3a / RL3b соединены с источником питания 14 В, так что эти реле быстро активируются и деактивируются в зависимости от состояния входной сети и выполняют необходимые действия по переключению.Этот источник питания 14 В также используется в качестве источника для зарядки инверторной батареи при наличии сетевого питания.

Катушка RL1 может быть видна подключенной к схеме операционного усилителя, которая контролирует зарядку батареи и обеспечивает отключение питания батареи от источника 14 В, как только оно достигает того же значения.

Он также гарантирует, что пока аккумулятор находится в режиме инвертора и потребляется нагрузкой, его нижний уровень разряда никогда не опускается ниже 11 В, и он отключает аккумулятор от инвертора, когда он достигает этого уровня.Обе эти операции выполняются реле RL1 в ответ на команды операционного усилителя.

Процедура настройки вышеупомянутой схемы зарядного устройства батареи ИБП может быть изучена из этой статьи, в которой обсуждается, как сделать зарядное устройство с отсечкой по нижнему и верхнему пределам с использованием IC 741

Теперь просто необходимо объединить все вышеперечисленные этапы вместе для выполнения прилично выглядящий небольшой ИБП, который можно использовать для обеспечения бесперебойного питания вашего ПК или любого другого подобного устройства.

Вот и все, на этом завершается наше руководство по проектированию персональной схемы ИБП, которое может легко сделать любой новичок, следуя приведенному выше подробному руководству.

О компании Swagatam

Я инженер-электронщик (dipIETE), любитель, изобретатель, разработчик схем / печатных плат, производитель. Я также являюсь основателем веб-сайта: https://www.homemade-circuits.com/, где я люблю делиться своими инновационными идеями и руководствами по схемам.
Если у вас есть запрос, связанный со схемой, вы можете взаимодействовать с ним через комментарии, я буду очень рад помочь!

.

Схема источника питания макетной платы DIY на печатной плате

Блок питания - очень часто используемый инструмент большинством инженеров на этапе разработки. Лично я часто использую его, когда экспериментирую с моими схемами на макетной плате или для включения простого модуля. Большинство цифровых схем или встроенных схем имеют стандартное рабочее напряжение 5 В или 3,3 В, поэтому я решил создать источник питания , который может подавать 5 В / 3,3 В на шины питания макета и плотно прилегает к макету. .

Полный блок питания будет разработан на печатной плате с использованием EasyEDA. В схеме используется 7805 для подачи 5 В и LM317 для подачи 3,3 В с максимальным номинальным током 1,5 А, что достаточно для источника питания цифровых микросхем и микроконтроллеров. Итак, приступим ...

Необходимые материалы

  • LM317 Регулятор переменного напряжения
  • 7805
  • Домкрат для цилиндров постоянного тока
  • Резистор 330 Ом и 560 Ом
  • 0.Конденсатор 1 и 1 мкФ
  • Светодиодный светильник
  • Мужской Bergstik
  • Печатная плата (от JLCPCB)

Принципиальная схема

Полная принципиальная схема для этого проекта источника питания макетной платы показана ниже. Схема была создана с использованием Easy EDA.

Для упрощения понимания схема разделена на четыре части. Верхняя левая и нижняя левая часть - это регулятор 5 В и 3.Регулятор 3В соответственно. Верхняя правая и нижняя правая часть - это контакты заголовка , с которых мы можем получить либо 5 В, либо 3,3 В, в зависимости от необходимости, путем изменения положения перемычки .

Для людей, которые плохо знакомы с этикетками, это просто виртуальный провод, который используется в принципиальных схемах для создания более аккуратных и простых для понимания. В приведенной выше схеме названия + 12V, + 5V и + 3.3V являются метками. Любые два места, где написана метка + 12В, фактически соединены проводом, то же самое применимо и для двух других меток + 5В и +3.3В тоже.

+ 5V Цепь регулятора

Мы использовали стабилизатор положительного напряжения 7805 , чтобы получить стабилизированное питание +5 В. Вход микросхемы осуществляется от адаптера 12 В, подключенного к цилиндрическому разъему постоянного тока. Для устранения пульсаций мы использовали конденсатор емкостью 1 мкФ на входе и конденсатор емкостью 0,1 мкФ на выходе. Регулируемое выходное напряжение +5 В можно получить для контакта 3. При правильном радиаторе мы можем получить около 1.5A образуют микросхему 7805 IC.

Цепь регулятора + 3,3 В

Аналогично для получения + 3,3 В мы использовали регулятор напряжения LM317 . LM317 - это регулируемый стабилизатор напряжения, который принимает входное напряжение 12 В и обеспечивает фиксированное выходное напряжение 3,3 В. Выходное напряжение V out зависит от номиналов внешнего резистора R 1 и R 2 согласно следующему уравнению:

Рекомендуемое значение для R1 - 240 Ом, но может быть и другое значение от 100 Ом до 1000 Ом.Мы можем использовать этот онлайн-калькулятор для расчета значений R1 и R2, я установил, что значение R1 равно 330R, а значение выходного напряжения - 3,3 В. После нажатия на кнопку расчета я получил следующий результат.

Поскольку у нас нет резистора на 541,19 Ом, мы использовали ближайшее возможное значение, которое составляет 560 Ом. Мы также добавили светодиод через еще один резистор 560 Ом, который будет работать как индикатор питания.

Размещение штифтов жатки

В двух вышеупомянутых блоках цепей мы отрегулировали + 5В и +3.3 В образуют источник 12 В. Теперь мы должны предоставить пользователю возможность выбирать между напряжением + 5 В или напряжением + 3,3 В в соответствии с требованиями пользователя. Для этого мы использовали штыри с перемычками. Пользователь может переключать перемычку для выбора значений напряжения + 5В и + 3,3В . Мы также разместили еще один штырь заголовка в нижней части печатной платы, чтобы мы могли установить его прямо на макетной плате.

Дизайн печатной платы с использованием EasyEDA

Для разработки этого источника питания Breadboard мы выбрали онлайн-инструмент EDA под названием EasyEDA.Раньше я много раз использовал EasyEDA и нашел его очень удобным в использовании, поскольку он имеет хороший набор следов и имеет открытый исходный код. После проектирования печатной платы мы можем заказать образцы печатной платы в их недорогих услугах по изготовлению печатных плат. Они также предлагают услуги по подбору компонентов, когда у них есть большой запас электронных компонентов, и пользователи могут заказывать необходимые компоненты вместе с заказом печатной платы.

При разработке схем и печатных плат вы также можете сделать общедоступными свои схемы и конструкции печатных плат, чтобы другие пользователи могли их копировать или редактировать и извлекать выгоду из вашей работы. Мы также сделали общедоступными макеты всех схем и печатных плат для этой схемы, проверьте ссылку ниже:

https: // easyeda.com / circuitdigest / макетная-схема-источника питания

Вы можете просмотреть любой слой (верхний, нижний, верхний, нижний, шелковый и т. Д.) Печатной платы, выбрав слой в окне «Слои».

Вы также можете просмотреть печатную плату, как она будет выглядеть после изготовления, используя кнопку Photo View в EasyEDA:

Расчет и заказ образцов онлайн

После завершения проектирования этого блока питания Bread Board PCB, вы можете заказать печатную плату через JLCPCB.com. Чтобы заказать печатную плату в JLCPCB, вам потребуется файл Gerber. Чтобы загрузить файлы Gerber вашей печатной платы, просто нажмите кнопку Generate Fabrication File на странице редактора EasyEDA, затем загрузите файл Gerber оттуда или вы можете щелкнуть Order в JLCPCB , как показано на изображении ниже. Это перенаправит вас на JLCPCB.com, где вы можете выбрать количество плат, которые вы хотите заказать, сколько слоев меди вам нужно, толщину печатной платы, вес меди и даже цвет печатной платы, как показано на снимке ниже:

После того, как вы выбрали все параметры, нажмите «Сохранить в корзину», после чего вы попадете на страницу, где вы можете загрузить свой файл Gerber, который мы загрузили с EasyEDA.Загрузите свой файл Gerber и нажмите «Сохранить в корзину». И, наконец, нажмите «Оформить заказ», чтобы завершить заказ, и через несколько дней вы получите свои печатные платы. Они производят печатную плату по очень низкой цене - 2 доллара. Их время сборки также очень мало, что составляет 48 часов с доставкой DHL 3-5 дней, в основном вы получите свои печатные платы в течение недели с момента заказа.

После заказа печатной платы вы можете проверить Production Progress вашей печатной платы с указанием даты и времени.Вы можете проверить это, перейдя на страницу учетной записи и щелкнув ссылку «Production Progress» под печатной платой, как показано на изображении ниже.

После нескольких дней заказа печатных плат я получил образцы печатных плат в красивой упаковке, как показано на рисунках ниже.

И после того, как достал эти детали, я припаял все необходимые компоненты поверх печатной платы.

Работа цепи питания макета

После сборки вашей печатной платы убедитесь, что нет холодной пайки, и удалите весь лишний флюс с вашей платы.Закрепите плату поверх макета, и она должна плотно прилегать между обеими шинами питания макета, теперь используйте адаптер 12 В для питания вашей платы через разъем постоянного тока, и вы должны увидеть, как загорится светодиод питания (здесь белый цвет). Затем вы можете установить перемычку на сторону 5 В или 3,3 В, используя информацию шелкографии. Убедитесь, что вы используете перемычки, иначе на выходной стороне не будет напряжения.

На изображении выше я установил перемычку для обеспечения + 5В и измерил то же самое с помощью мультиметра, который также показывает 4.97V, что достаточно близко. Аналогичным образом можно проверить и 3,3 В. Полная работа и тестирование проекта также показаны на видео ниже .

Теперь вы можете использовать эту плату для питания всей вашей будущей электроники на макетной плате с напряжением 5 В или 3,3 В. Надеюсь, вы поняли проект и получили удовольствие от его создания. Если у вас возникли проблемы с его запуском, вы можете опубликовать его в разделе комментариев или использовать наши форумы для получения дополнительных технических вопросов.

.

Как отремонтировать импульсный источник питания (SMPS)

Последнее обновление by Swagatam 28 комментариев

В этом посте мы пытаемся диагностировать сгоревшую цепь SMPS и пытаемся устранить неисправности и восстановить схема. Представленный блок представляет собой дешевую готовую схему ИИП китайского производства. Эта статья написана по запросу г-на Кесавы.

Сгорел мой SMPS

Вложение ниже 1

.

Смотрите также