Вход на сайт

Зарегистрировавшись на сайте Вы сможете добавлять свои материалы






Схема сварочного самодельного инвертора


схема самодельной инверторной сварки и как сделать аппарат?

На чтение 10 мин. Просмотров 9.3k. Опубликовано Обновлено

Для того чтобы собрать сварочный инвертор своими руками, не обязательно обладать глубокими познаниями в физике, разбираться профессионально в технике, электричестве и т.д.

Необходимо только выполнять все по схеме и знать, хотя бы на минимальном уровне механизм действия данного оборудования. Желающим создать инвертор в более экономном и простом варианте, следует знать, что технические особенности и КПД по сути одинаковые от аналогов конструкции.

Характеристики самодельного инвертора

Один из важных вопросов для специалистов по сварке – как сделать своими руками. Процесс можно выполнить при помощи схемотехники сварочных инверторов.

Прежде чем собирать эффективный сварочный инвертор необходимо выделить следующие технические характеристики оборудования:

  • на одном из транзисторов сила тока, который проходит через вход, должна составлять 32 ампера;
  • 250 ампер – показатель силы тока, который создается при выходе из аппарата;
  • напряжение должно быть до 220 вольт.

Для того чтобы создать самый простой сварочный инвертор необходимо соединить следующие элементы в один механизм:

  • силовой блок;
  • питательный блок на тиристорах;
  • драйвера для силовых ключей.

Материалы для его сборки

Чертеж инверторного сварочного аппарата.

Прежде чем начать собирать , мастер должен подготовить необходимые инструменты и материалы, которые могут понадобиться ему в работе.

В первую очередь:

  • различного типа отвертки;
  • паяльное устройство, чтобы соединять детали в электронной схеме;
  • нож;
  • инструмент для вырезки на металлической поверхности;
  • резьба, как крепежная деталь;
  • поверхность с небольшой толщиной из металла;
  • детали, благодаря которым формируется электросхема инверторного сварочного аппарата;
  • провод из меди и полосы, чтобы обмотать трансформатор потребуется;
  • стеклоткань;
  • слюда;
  • текстолиты;
  • обычная термобумага, использующаяся в кассовых аппаратах.
[box type=”fact”]Схема сварочного аппарата используется для сборки оборудования в домашних условиях с напряжением от электросети в 220 вольт.[/box]

Но если есть надобность, то используют схемы сварочных аппаратов, работающие на трехфазовой электросети с напряжением в 380 вольт. У таких оборудований есть достоинства, среди которых выделяют высокий показатель КПД, в отличие от однофазовых конструкций.

Блок питания агрегата

В блоке питания сварочного инвертора самой важной деталью является , мотающийся при феррите в Ш7*7 либо 8*8.

Блок питания инвертора.

При помощи данного механизма обеспечивается подача регулярного напряжения и создается за счет 4-х обмоток:

  1. Первичная.
    Сто кругов проводом ПЭВ в диаметре 0,3 миллиметра.
  2. Первая вторичная.
    15 кругов проводом ПЭВ в диаметре 1 миллиметр.
  3. Вторая вторичная.
    15 кругов ПЭВ в диаметре 0,2 миллиметра.
  4. Третья вторичная.
    20 кругов в диаметре 0,3 миллиметра.

После того как будет выполнена первичная обмотка и проведена изоляция её сторон за счет стеклоткани, её также обматывают в экранирующий провод. Каждый виток должен целиком покрывать защитный слой.

Обмотка экранирующим проводом должна быть в таком же направлении, как и первичная обмотка. Стоит обратить внимание на одинаковость диаметров двух видов обмоток.

Этим же правилом пользуются и для других видов: при наматывании на каркас трансформатора, изоляции друг от друга проводов за счет стеклоткани либо при использовании простого малярного скотча.

Для стабилизации напряжения в области 20-25 вольт, что поступает в блок питания через реле, подбирается резистор для электронных схем. Главной особенностью рассматриваемого механизма выступает изменение переменного тока в регулярный.

Добиться этого можно, используя диод, формирующийся при выполнении схемы «косой мост». Бывает так, что при эксплуатации аппарата диод перегревается, из-за чего приходится проводить монтаж на радиаторах и нередко ремонт блока питания. Альтернативным вариантом радиаторам является охлаждающая деталь от старой техники.

Монтаж диодного моста подразумевает под собой применение 2-х радиаторов: верх через прокладку из слюды присоединяют к одной батареи, а низ через поверхность термопасты ко второй батареи.

Мост из диодов должен выводиться в том направлении, куда направлен вывод транзистора. За счет этого постоянный ток превращается в переменный с высокими частотами.

Соединительный провод этих выводов максимум может достигать длины в 15 сантиметров. Металлический лист необходимо расположить между блоком питания и инверторной частью аппарата и приварить к «телу» оборудования.

Силовой блок

Изготовление сварочного инвертора.

Силовой блок – это основа трансформатора в сварочном инверторе. С его помощью уменьшается показатель напряжения тока с высокими частотами, а сила наоборот повышается. Для создания в трансформаторе силового блока требуется использование сердечников. Чтобы создать небольшой зазор рекомендуется воспользоваться обычной газетной бумагой.

С каждым наложенным слоем, чтобы обеспечить термоизоляцию необходимо наматывать ленту от кассового аппарата для достижения хорошей износоустойчивости. Вторичную обмотку создают на основе 3-х полосовых слоев из меди, изолирующиеся друг от друга за счет ленты фторопласта.

Большинство мастеров обматывают понижающий трансформатор толстым проводом из меди, однако, это ошибочное действие. С таким трансформатором простой сварочный инвертор будет работать с высокочастотным током, вытесняющим наружу проводник без нагревания деталей внутри.

Оптимальнее всего формировать обмотки, используя проводник с широкой поверхностью, иными словами применить широкую медную полосу.

Вместо термоизоляционного поверхностного слоя специалисты иногда заменяют на простую бумагу. Она не так устойчива, как термоизоляционная либо лента в кассовом аппарате. Повышенная температура влияет только на потемнение ленты, однако её износоустойчивость остается на первоначальном уровне.

Инверторный блок

Основная функция простого заключается в преобразовании постоянного тока, который формируется при помощи выпрямителя аппарата в переменный высокочастотный ток.

Чтобы решить данную ситуацию, специалисты используют силовой транзистор, и высокие частоты с открывающимся и закрывающимся каналом. Рассматриваемый механизм в оборудовании отвечает за изменение постоянного тока в переменный с высокими частотами.

[box type=”info”]Рекомендуется использовать не один мощный транзистор, а пару со средней мощностью. Благодаря конструктивному подходу к проблеме стабилизируется частота тока и уменьшится шум во время сварки.[/box]

Инверторный сварочный аппарат сделать своими руками можно по электросхеме, где указывается и как последовательно соединять конденсаторы.

Их используют в следующих случаях:

  1. Минимализация выброса в трансформаторе.
  2. Минимализация потерь в трансформаторном блоке, появляющиеся в момент отключения аппарата от сети.
    Это происходит за счет того, что транзистор открывается с большей скоростью, чем закрывается – ток теряет свою мощность, что влечет за собой перегрев ключей в блоке транзистора.

Система охлаждения агрегата

Электрическая схема инвертора для сварки.

Стоит отметить, что большинство силовых элементов в сварочном оборудовании имеют свойство сильно нагреваться во время эксплуатации, из-за чего оно может сломаться.

Дабы избежать таких ситуаций, то эффективнее всего во все блоки аппарата, помимо радиатора, установить вентилятор, охлаждающий механизм во время работы – своеобразную систему охлаждения.

Её можно самостоятельно сделать при наличии мощного вентилятора. Зачастую используют один с направлением воздушного потока в сторону понижающегося силового трансформатора.

С вентилятором, у которого небольшая мощность от компьютера, например, может понадобиться до 6 штук, из которых три устройства устанавливается возле силового трансформатора с направлением воздушного потока в обратную сторону.

Чтобы избежать перегрева, самодельный сварочный инвертор должен работать вместе с термодатчиком. Он устанавливается на греющий радиатор. Если радиатор достигает максимальное значение температуры, он автоматически отключает подачу тока.

Для более эффективного функционала системы охлаждения агрегата, корпус должен быть оснащен заборщиком воздуха с правильным его выполнением. Через его решетки проходит воздушный поток во внутренние системы аппарата.

Сборка инвертора своими руками

Важным вопросом остается, как сделать ? В первую очередь нужно выбрать корпус с надежной защитой либо сформировать его самому при помощи листового металла, где толщина должна достигать не меньше, чем 4 миллиметра.

За основу, где монтируется для инверторной сварки, используют листовой гетинакс с толщиной не меньше, чем 5 миллиметров. Сама конструкция будет располагаться на основании благодаря скобам, изготовленным самостоятельно из медных проволок в диаметре с 3 миллиметрами.

Чтобы создать электронные платы в электрических схемах сварочного аппарата, используют фольгированный текстолит, у которого толщина достигает 1 миллиметр. Монтируя магнитопроводы, которые в период эксплуатации имеют свойство греться, необходимо помнить о зазорах между ними. Они нужны, чтобы воздух мог свободно циркулировать.

С целью автоматического управления сварочным инвертором, сварщик должен купить и подсоединить к нему специальный контроллер, отвечающий за стабильность силы тока. От него также зависит, будет ли величина напряжения подачи мощной.

Для более удобной эксплуатации самодельного агрегата, во внешнюю часть монтируется орган управления. Он может выступать в виде тумблера для активации аппарата, ручкой в переменном резисторе, благодаря ей контролируется подача тока либо зажим для кабеля и сигнальный светодиод.

Собрать сварочный инвертор своими руками достаточно просто, если придерживаться всех правил, соблюдать инструкцию и строго идти по назначенной схеме.

Схема изготовления инвертора своими руками.

Диагностика самодельного инвертора и его подготовка к работе

Собрать самодельный не весь процесс. Подготовительный этап также считается важной частью всей работы, где необходимо проверить, правильно ли работают все его системы, и как нужно настроить нужные параметры.

В первую очередь проводится диагностика оборудования, а именно подача напряжения 15 вольт на контроллер и охлаждающую систему сварочного аппарата, чтобы проверить их выдержку. Благодаря этому проверяется функционал механизмов и избежание перегревания во время эксплуатации агрегата.

[box type=”warning”]При полной зарядке конденсаторов в агрегате, подключается к электросети реле, отвечающее за замыкание резисторов. С прямой подачей, без реле, есть риск взрыва аппарата.[/box]

При функциональности реле, напряжение в аппарат подается до 10 секунд. Достаточно важно узнать, сколько инвертор может во время сварки функционировать. Для этого он тестируется на протяжении 10 секунд. Если радиатор остается с прежней температурой, то время можно установить до 20 секунд, и т.д. до целой минуты.

Обслуживание самодельного сварочного инвертора

Чертеж сварочного инвертора для сборки своими руками.

Для того, чтобы простой сварочный инвертор сделанный своими руками смог долго работать, за ним необходим грамотный уход. При поломке сварочного оборудования требуется снять корпус и аккуратно прочистить механизм при помощи пылесоса. В частях, куда он не достается можно воспользоваться кисточкой и сухой тряпкой.

В первую очередь, нужно провести диагностику всего сварочного оборудования – проверяется напряжение, его вход и течение. При отсутствии напряжения необходимо проследить за функциональностью блока питания.

Также проблема может заключаться в сгоревших предохранителях конструкции. Слабым место считается и датчик, измеряющий температуру, который не ремонтируется, а заменяется.

После проведения диагностики необходимо обратить внимание на качество соединения электронных систем оборудования. Затем выявить некачественное скрепление на глаз либо используя специальный тестер.

При выявлении данных неполадок, они устраняются тотчас за счет доступных деталей, чтобы не спровоцировать перегрев и поломку всего сварочного оборудования.

Итог

Ошибочно считать, что созданный самостоятельно аппарат не позволит вам эффективно выполнять необходимую работу. Самодельным устройством с легкой схемой сборки можно сваривать элементы при помощи электрода в диаметре до 5 миллиметров и длиной дуги до 10 миллиметров.

После того, как самодельное оборудование будет включено в цепь, необходимо выставить автоматический режим с конкретным значением силы тока. Напряжение в проводе может быть около 100 вольт, что свидетельствует о каких-либо неполадках.

Чтобы устранить проблему надо найти схему сварочного инвертора, разобрать его и проверить насколько правильно он был собран.

Благодаря такому самодельному аппарату сварщик не только может сваривать однородный, темный металл, но также цветной и различные сплавы. Собирая такое устройство, необходимо помимо основ электроники, также иметь свободный период времени, чтобы осуществить задуманное.

Сварочный процесс при помощи инвертора – это нужная вещь в доме каждого мужчины для любых бытовых и промышленных целей.

Цепь сварочного инвертора

SMPS | Проекты самодельных схем

Если вы ищете вариант замены обычного сварочного трансформатора, сварочный инвертор - лучший выбор. Сварочный инвертор удобен и работает от постоянного тока. Текущий контроль поддерживается с помощью потенциометра.

Автор: Dhrubajyoti Biswas

Использование топологии с двумя переключателями

При разработке сварочного инвертора я применил прямой инвертор с топологией с двумя переключателями. Здесь входное линейное напряжение проходит через фильтр электромагнитных помех, а затем сглаживается с большой емкостью.

Однако, поскольку импульс тока включения имеет тенденцию быть высоким, необходимо наличие цепи плавного пуска. Поскольку переключение включено и конденсаторы первичного фильтра заряжаются через резисторы, мощность дополнительно обнуляется путем включения реле.

В момент переключения мощности транзисторы IGBT используются и затем используются через управляющий трансформатор прямого затвора TR2 с последующим формированием схемы с помощью регуляторов IC 7812.

Использование микросхемы UC3844 для управления ШИМ

В этом сценарии используется схема управления UC3844, которая очень похожа на UC3842 с ограничением ширины импульса до 50% и рабочей частотой до 42 кГц.

Цепь управления получает питание от вспомогательного источника питания 17 В. Из-за больших токов в обратной связи по току используется трансформатор Tr3.

Напряжение регистра считывания 4R7 / 2W более или менее равно выходному току. Выходной ток можно дополнительно контролировать с помощью потенциометра P1. Его функция заключается в измерении пороговой точки обратной связи, а пороговое напряжение на выводе 3 UC3844 составляет 1 В.

Одним из важных аспектов силовых полупроводников является то, что они нуждаются в охлаждении, и большая часть выделяемого тепла отводится через выходные диоды.

Верхний диод, состоящий из 2x DSEI60-06A, должен выдерживать ток в среднем 50 А и потери до 80 Вт.

Нижний диод, т.е. STTh300L06TV1, также должен иметь средний ток 100А и потери до 120Вт. С другой стороны, общие максимальные потери вторичного выпрямителя составляют 140 Вт. Выходной дроссель L1 дополнительно подключен к отрицательной шине.

Это хороший сценарий, так как радиатор закрыт от высокочастотного напряжения. Другой вариант - использовать диоды FES16JT или MUR1560.

Однако важно учитывать, что максимальный ток нижнего диода вдвое больше тока верхнего диода.

Расчет потерь IGBT

На самом деле расчет потерь IGBT - сложная процедура, поскольку, помимо потерь на проводимость, еще одним фактором являются потери при переключении.

Также каждый транзистор теряет около 50 Вт. Выпрямительный мост также теряет мощность до 30 Вт, и он помещен на тот же радиатор, что и IGBT, вместе с диодом сброса UG5JT.

Также есть возможность заменить UG5JT на FES16JT или MUR1560. Потеря мощности диодов сброса также зависит от конструкции Tr1, хотя потери меньше по сравнению с потерей мощности от IGBT. Выпрямительный мост также приводит к потере мощности около 30 Вт.

Кроме того, при подготовке системы важно не забывать масштабировать максимальный коэффициент нагрузки сварочного инвертора. После этого, основываясь на измерениях, вы можете быть готовы выбрать правильный размер калибра обмотки, радиатора и т. Д.

Еще один хороший вариант - добавить вентилятор, так как он будет контролировать нагрев.

Принципиальная схема

Детали обмотки трансформатора

Коммутационный трансформатор Tr1 имеет два ферритовых EE сердечника, и оба они имеют центральную секцию колонны 16x20 мм.

Таким образом, общее поперечное сечение составляет 16x40 мм. Следует соблюдать осторожность, чтобы не оставлять воздушных зазоров в области сердечника.

Хорошим вариантом было бы использовать 20-витковую первичную обмотку, намотав на нее 14 проводов из 0.Диаметр 5 мм.

С другой стороны, вторичная обмотка имеет шесть медных полос 36x0,55 мм. Трансформатор прямого привода Tr2, который разработан с низкой паразитной индуктивностью, следует трехсторонней схеме намотки с тремя витыми изолированными проводами диаметром 0,3 мм и обмотками по 14 витков.

Активная часть изготовлена ​​из стали h32 с диаметром средней стойки 16мм и без зазоров.

Трансформатор тока Tr3 изготовлен из дросселей для подавления электромагнитных помех. В то время как первичный имеет только 1 ход, вторичный получает ранение за 75 ходов из 0.Проволока 4 мм.

Важным моментом является соблюдение полярности обмоток. В то время как L1 имеет ферритовый сердечник EE, средний столбец имеет поперечное сечение 16x20 мм с 11 витками медной полосы 36x0,5 мм.

Кроме того, общий воздушный зазор и магнитная цепь установлены на 10 мм, а его индуктивность составляет 12 мкГн cca.

Обратная связь по напряжению на самом деле не мешает сварке, но определенно влияет на потребление и потери тепла в режиме ожидания. Использование обратной связи по напряжению очень важно из-за высокого напряжения около 1000 В.

Кроме того, ШИМ-контроллер работает с максимальным рабочим циклом, что увеличивает расход энергии, а также увеличивает количество нагревательных компонентов.

Постоянный ток 310 В может быть извлечен из сети 220 В после выпрямления через мостовую сеть и фильтрации через пару электролитических конденсаторов 10 мкФ / 400 В.

Источник питания 12 В можно получить от готового блока адаптера 12 В или собрать дома с помощью информации, представленной здесь :

Цепь для сварки алюминия

Этот запрос был отправлен мне одним из преданных читателей этого блога Mr.Хосе. Вот подробности требования:

Мой сварочный аппарат Fronius-TP1400 полностью функционален, и я не заинтересован в изменении его конфигурации. Эта устарелая машина является первым поколением инверторных машин.

Это базовое устройство для сварки покрытым электродом (сварка MMA) или вольфрамовой дугой (сварка TIG). Переключатель позволяет выбор.

Это устройство выдает только постоянный ток, это очень удобно для большого количества свариваемых металлов.

Есть несколько металлов, таких как алюминий, которые из-за быстрой коррозии при контакте с окружающей средой необходимо использовать пульсирующий переменный ток (прямоугольная волна от 100 до 300 Гц), что облегчает устранение коррозии в циклах с обратной полярностью и поверните плавку в циклы прямой полярности.

Существует мнение, что алюминий не окисляется, но это неверно, что происходит так, что в нулевой момент, когда он вступает в контакт с воздухом, образуется тонкий слой окисления, который с этого момента сохраняет его от следующих последующих окисление.Этот тонкий слой затрудняет сварку, поэтому используется переменный ток.

Мое желание - сделать устройство, которое будет подключено между клеммами моего сварочного аппарата постоянного тока и горелки, чтобы получить переменный ток в горелке.

Вот где у меня возникли трудности в момент создания преобразователя CC в AC. Увлекаюсь электроникой, но не специалист.

Итак, я прекрасно понимаю теорию, я смотрю на микросхему HIP4080 или аналогичную таблицу данных, чтобы увидеть, что ее можно применить в моем проекте.

Но моя большая трудность в том, что я не делаю необходимых расчетов значений компонентов. Может быть, есть какая-то схема, которую можно применить или адаптировать, я ее не нахожу в Интернете и не знаю, где искать, поэтому прошу вашей помощи.

Конструкция

Чтобы гарантировать, что сварочный процесс может устранить окисленную поверхность алюминия и обеспечить эффективное сварное соединение, существующий сварочный стержень и алюминиевая пластина могут быть интегрированы со ступенью привода полного моста. , как показано ниже:

Rt, Ct можно вычислить методом проб и ошибок, чтобы получить колебания МОП-транзисторов на любой частоте от 100 до 500 Гц.Для точной формулы вы можете обратиться к этой статье.

Вход 15 В может быть запитан от любого адаптера переменного тока 12 В или 15 В постоянного тока.

О компании Swagatam

Я инженер-электронщик (dipIETE), любитель, изобретатель, разработчик схем / печатных плат, производитель. Я также являюсь основателем веб-сайта: https://www.homemade-circuits.com/, где я люблю делиться своими инновационными идеями и руководствами по схемам.
Если у вас есть запрос, связанный со схемой, вы можете взаимодействовать с ним через комментарии, я буду очень рад помочь!

.

7 простых инверторных схем, которые вы можете построить дома

Эти 7 инверторных схем могут показаться простыми с их конструкцией, но способны обеспечить достаточно высокую выходную мощность и КПД около 75%. Узнайте, как собрать этот дешевый мини-инвертор и запитать небольшие приборы на 220 или 120 В, такие как сверлильные станки, светодиодные лампы, лампы CFL, фен, мобильные зарядные устройства и т. Д., От аккумулятора 12 В 7 Ач.

Что такое простой инвертор

Инвертор, который использует минимальное количество компонентов для преобразования 12 В постоянного тока в 230 В переменного тока, называется простым инвертором.Свинцово-кислотная батарея на 12 В является наиболее стандартной формой батареи, которая используется для работы таких инверторов.

Начнем с самого простого из списка, в котором используется пара транзисторов 2N3055 и несколько резисторов.

1) Схема простого инвертора на транзисторах с перекрестной связью

В статье рассматриваются детали конструкции мини-инвертора. Прочтите, чтобы узнать о процедуре построения базового инвертора, который может обеспечивать достаточно хорошую выходную мощность, но при этом очень доступный и элегантный.

В Интернете и электронных журналах может быть огромное количество инверторных схем. Но эти схемы зачастую представляют собой очень сложные и высокотехнологичные инверторы.

Таким образом, у нас не остается выбора, кроме как задаваться вопросом, как построить силовые инверторы, которые могут быть не только простыми в сборке, но также дешевыми и высокоэффективными в работе.

Схема инвертора от 12 В до 230 В

На этом ваши поиски такой схемы заканчиваются. Описанная здесь схема инвертора, пожалуй, самая маленькая по количеству компонентов, но при этом достаточно мощная, чтобы удовлетворить большинство ваших требований.

Порядок сборки

Для начала убедитесь, что для двух транзисторов 2N3055 установлены подходящие радиаторы. Его можно изготовить следующим образом:

  • Вырежьте два листа алюминия по 6/4 дюйма каждый.
  • Согните один конец листа, как показано на схеме. Просверлите отверстия подходящего размера на изгибах, чтобы его можно было надежно закрепить на металлическом шкафу.
  • Если вам сложно изготовить этот радиатор, вы можете просто приобрести его в местном электронном магазине, показанном ниже:
  • Также просверлите отверстия для установки силовых транзисторов.Отверстия диаметром 3мм, типоразмер ТО-3.
  • Плотно закрепите транзисторы на радиаторах с помощью гаек и болтов.
  • Подключите резисторы перекрестной связью непосредственно к выводам транзисторов в соответствии с принципиальной схемой.
  • Теперь присоедините радиатор, транзистор, резистор в сборе ко вторичной обмотке трансформатора.
  • Закрепите всю схему вместе с трансформатором внутри прочного, хорошо вентилируемого металлического корпуса.
  • Смонтируйте выходные и входные гнезда, держатель предохранителя и т. Д. Снаружи шкафа и подсоедините их соответствующим образом к схемному узлу.

После завершения вышеуказанной установки радиатора вам просто нужно соединить несколько резисторов высокой мощности и 2N3055 (на радиаторе) с выбранным трансформатором, как показано на следующей схеме.

Полная схема электропроводки

После того, как вышеуказанная проводка будет завершена, пора подключить ее к батарее 12 В 7 Ач с лампой 60 Вт, прикрепленной к вторичной обмотке трансформатора.При включении в результате будет мгновенное освещение груза с поразительной яркостью.

Здесь ключевым элементом является трансформатор, убедитесь, что трансформатор действительно рассчитан на 5 ампер, иначе вы можете обнаружить, что выходная мощность намного меньше ожидаемой.

Я могу сказать это по своему опыту, я построил это устройство дважды: один раз, когда я учился в колледже, и второй раз недавно, в 2015 году. Приобрел от своего предыдущего агрегата.Причина была проста: предыдущий трансформатор представлял собой надежный, изготовленный по индивидуальному заказу трансформатор на 5 ампер 9-0-9 В, по сравнению с новым, в котором я, вероятно, использовал ложно рассчитанный 5 ампер, что на самом деле было всего 3 ампер на его выходе.

Перечень деталей

Для конструкции вам потребуются всего несколько следующих компонентов:

  • R1, R2 = 100 Ом / 10 Ватт намотка провода
  • R3, R4 = 15 Ом / 10 Вт проволока намотка
  • T1 , Т2 = 2Н3055 СИЛОВЫЕ ТРАНЗИСТОРЫ (МОТОРОЛА).
  • ТРАНСФОРМАТОР = 9-0-9 Вольт /8 Ампер или 5 ампер.
  • АВТОМОБИЛЬНАЯ АККУМУЛЯТОРНАЯ БАТАРЕЯ = 12 В / 10 Ач
  • АЛЮМИНИЕВЫЙ РАДИАТОР = ОТРЕЗАТЬ ДО ТРЕБУЕМОГО РАЗМЕРА.
  • ВЕНТИЛИРУЕМЫЙ МЕТАЛЛИЧЕСКИЙ ШКАФ = СООТВЕТСТВУЕТ РАЗМЕРАМ ВСЕГО УЗЛА

Видео-тестовая проба

Как это проверить?

  • Тестирование этого мини-инвертора выполняется следующим методом:
  • Для тестирования подключите лампу накаливания мощностью 60 Вт к выходному разъему инвертора.
  • Затем подключите полностью заряженный автомобильный аккумулятор 12 В к его клеммам питания.
  • Лампа мощностью 60 Вт должна сразу же ярко загореться, указывая на то, что инвертор работает нормально.
  • На этом конструирование и тестирование схемы инвертора завершается.
  • Я надеюсь, что из приведенных выше обсуждений вы, должно быть, ясно поняли, как построить инвертор, который не только прост в сборке, но и очень доступен для каждого из вас.
  • Может использоваться для питания небольших электроприборов, таких как паяльник, лампы КЛЛ, небольшие портативные вентиляторы и т. Д.Выходная мощность будет около 70 Вт и зависит от нагрузки.
  • КПД этого инвертора составляет около 75%. Устройство может быть подключено к аккумуляторной батарее вашего автомобиля, когда вы находитесь на улице, так что проблема с переносом дополнительной батареи устранена.

Работа схемы

Работа этой схемы мини-инвертора довольно уникальна и отличается от обычных инверторов, в которых для питания транзисторов используется каскад дискретного генератора.

Однако здесь две секции или два плеча схемы работают в регенеративном режиме.Это очень просто и может быть понято с помощью следующих пунктов:

Две половины схемы, независимо от того, насколько они согласованы, всегда будут иметь небольшой дисбаланс в параметрах, окружающих их, таких как резисторы, Hfe, витки обмотки трансформатора и т. Д.

Из-за этого обе половины не могут проводить вместе одновременно.

Предположим, что первыми проводят ток верхние полупроводниковые транзисторы, очевидно, они будут получать свое напряжение смещения через нижнюю половину обмотки трансформатора через R2.

Однако в тот момент, когда они насыщаются и проводят полную проводку, все напряжение батареи передается через их коллекторы на землю.

Отсасывает любое напряжение через R2 к их базе, и они немедленно прекращают проводить.

Это дает возможность нижним транзисторам проводить, и цикл повторяется.

Таким образом, вся цепь начинает колебаться.

Базовые эмиттерные резисторы используются для определения определенного порога разрыва их проводимости, они помогают установить базовый опорный уровень смещения.

Вышеупомянутая схема была вдохновлена ​​следующим дизайном Motorola:


ОБНОВЛЕНИЕ: Вы также можете попробовать это: Схема мини-инвертора 50 Вт


Форма выходного сигнала лучше, чем прямоугольная (разумно подходит для все электронные устройства))

Конструкция печатной платы для описанной выше простой схемы инвертора 2N3055 (схема расположения рельсов)

2) Использование IC 4047

Как показано выше, простой, но полезный маленький инвертор можно построить, используя всего один IC 4047.IC 4047 - это универсальный генератор с одиночной интегральной схемой, который обеспечивает точные периоды включения / выключения на своих выходных контактах №10 и №11. Частоту здесь можно определить, точно рассчитав резистор R1 и конденсатор C1. Эти компоненты определяют частоту колебаний на выходе ИС, которая, в свою очередь, устанавливает выходную частоту 220 В переменного тока этой схемы инвертора. Он может быть установлен на 50 Гц или 60 Гц в зависимости от индивидуальных предпочтений.

Аккумулятор, МОП-транзистор и трансформатор можно модифицировать или модернизировать в соответствии с требуемой выходной мощностью инвертора.

Для расчета значений RC и выходной частоты, пожалуйста, обратитесь к таблице данных IC

Результаты тестирования видео

3) Использование IC 4049

Информация о контактах IC 4049

В этом простом инверторе Мы используем одну микросхему IC 4049, которая включает в себя 6 вентилей НЕ или 6 инверторов внутри. На диаграмме выше N1 ---- N6 обозначают 6 вентилей, которые сконфигурированы как каскады генератора и буфера. Вентили НЕ N1 и N2 в основном используются для каскада генератора, C и R могут быть выбраны и зафиксированы для определения частоты 50 Гц или 60 Гц в соответствии со спецификациями страны

Остальные ворота N3 - N6 настраиваются и конфигурируются как буферы и инверторы, так что конечный результат приводит к генерации чередующихся импульсов переключения для силовых транзисторов.Конфигурация также гарантирует, что никакие вентили не останутся неиспользованными и простаивающими, что в противном случае может потребовать, чтобы их входы были терминированы отдельно по линии питания.

Трансформатор и аккумулятор можно выбрать в соответствии с требованиями к мощности или мощностью нагрузки.

На выходе будет чисто прямоугольная волна.

Формула для расчета частоты имеет следующий вид:

f = 1 /1.2RC,

где R будет в омах, а F в фарадах

4) Использование IC 4093

Информация о контактах IC 4093

Очень похоже на предыдущий инвертор с логическим элементом НЕ, простой инвертор на основе логического элемента И-НЕ, показанный выше, может быть построен с использованием одной микросхемы 4093.Створки с N1 по N4 обозначают 4 затвора внутри IC 4093.

N1 подключен как схема генератора для генерации необходимых импульсов 50 или 60 Гц. Они соответствующим образом инвертируются и буферизируются с использованием оставшихся вентилей N2, N3, N4, чтобы, наконец, передать чередующуюся частоту переключения между базами силовых BJT, которые, в свою очередь, переключают силовой трансформатор с заданной скоростью для выработки необходимых 220 В или 120 В. Переменный ток на выходе.

Хотя здесь подойдет любая ИС логического элемента NAND, рекомендуется использовать IC 4093, поскольку в ней есть функция триггера Шмидта, которая обеспечивает небольшую задержку переключения и помогает создать своего рода мертвое время на коммутационных выходах, гарантируя, что питание устройства никогда не включаются вместе даже на долю секунды.

5) Еще один простой инвертор с затвором NAND с использованием полевых МОП-транзисторов

В следующих параграфах объясняется еще одна простая, но мощная схема инвертора, которая может быть создана любым энтузиастом электроники и использоваться для питания большинства бытовых электроприборов (резистивных нагрузок и нагрузок SMPS) .

Использование пары МОП-транзисторов влияет на мощный отклик схемы, состоящей из очень небольшого количества компонентов, однако конфигурация прямоугольной волны действительно ограничивает использование устройства довольно большим количеством полезных приложений.

Введение

Расчет параметров полевого МОП-транзистора может показаться сложным, однако, следуя стандартной конструкции, заставить эти замечательные устройства действовать определенно легко.

Когда мы говорим о схемах инвертора с выходами мощности, полевые МОП-транзисторы обязательно становятся частью конструкции, а также основным компонентом конфигурации, особенно на выходных концах схемы.

Инверторные схемы являются фаворитами этих устройств, поэтому мы будем обсуждать одну такую ​​конструкцию, включающую полевые МОП-транзисторы для питания выходного каскада схемы.

На схеме мы видим очень простую конструкцию инвертора, включающую каскад прямоугольного генератора, буферный каскад и выходной каскад мощности.

Использование одной ИС для генерации требуемых прямоугольных волн и для буферизации импульсов, в частности, упрощает разработку конструкции, особенно для начинающих энтузиастов электроники.

Использование IC 4093 вентилей И-НЕ для схемы генератора

IC 4093 - это ИС триггера Шмидта с четырьмя вентилями И-НЕ, одиночная И-НЕ подключена как нестабильный мультивибратор для генерации базовых прямоугольных импульсов.Номинал резистора или конденсатора может быть отрегулирован для получения импульсов частотой 50 или 60 Гц. Для приложений 220 В необходимо выбрать вариант 50 Гц, а для версий на 120 В. - 60 Гц.

Выход из вышеупомянутого каскада генератора связан с парой дополнительных логических элементов И-НЕ, используемых в качестве буферов, выходы которых в конечном итоге завершаются затвором соответствующих полевых МОП-транзисторов.

Два логических элемента И-НЕ соединены последовательно, так что два полевых МОП-транзистора получают поочередно противоположные логические уровни от каскада генератора и попеременно переключают полевые МОП-транзисторы для создания желаемой индукции во входной обмотке трансформатора.

Коммутация Mosfet

Вышеупомянутое переключение полевых МОП-транзисторов направляет весь ток батареи в соответствующие обмотки трансформатора, вызывая мгновенное повышение мощности на противоположной обмотке трансформатора, где в конечном итоге выводится выход на нагрузку. .

МОП-транзисторы способны выдерживать ток более 25 ампер, а их диапазон довольно велик, поэтому они подходят для управления трансформаторами с различными характеристиками мощности.

Это просто вопрос модификации трансформатора и батареи для создания инверторов различных диапазонов с разной выходной мощностью.

Список деталей для объясненной выше принципиальной схемы инвертора на 150 Вт:
  • R1 = 220K pot, необходимо установить для получения желаемой выходной частоты.
  • R2, R3, R4, R5 = 1K,
  • T1, T2 = IRF540
  • N1 — N4 = IC 4093
  • C1 = 0,01 мкФ,
  • C3 = 0,1 мкФ

TR1 = входная обмотка 0-12 В , ток = 15 А, выходное напряжение в соответствии с требуемыми характеристиками

Формула для расчета частоты будет идентична описанной выше для IC 4049.

f = 1 / 1.2RC. где R = R1 установленное значение, а C = C1

6) Использование IC 4060

Если у вас есть одна микросхема 4060 в вашем электронном ящике, вместе с трансформатором и несколькими силовыми транзисторами, вы, вероятно, все настроены на Создайте свою простую схему инвертора мощности, используя эти компоненты. Базовая конструкция предлагаемой схемы инвертора на основе IC 4060 может быть представлена ​​на диаграмме выше. Концепция в основном та же, мы используем IC 4060 в качестве генератора и настраиваем его выход для создания поочередно переключающихся импульсов через транзисторный каскад инвертора BC547.

Как и IC 4047, IC 4060 требует внешних RC-компонентов для настройки выходной частоты, однако выход IC 4060 ограничен 10 отдельными выводами в определенном порядке, при этом частота на выходе генерируется со скоростью, вдвое превышающей его предыдущей распиновки.

Несмотря на то, что вы можете найти 10 отдельных выходов с удвоенной частотой по выводам IC, мы выбрали вывод №7, поскольку он обеспечивает самую быструю частоту среди остальных и, следовательно, может выполнить это, используя стандартные компоненты для RC. сеть, которая может быть легко доступна вам независимо от того, в какой части земного шара вы находитесь.

Для расчета значений RC для R2 + P1 и C1 и частоты вы можете использовать формулу, как описано ниже:

Или другой способ - использовать следующую формулу:

f (osc) = 1 / 2.3 x Rt x Ct

Rt в Ом, Ct в фарадах

Более подробную информацию можно получить из этой статьи

Вот еще одна интересная идея инвертора DIY, которая чрезвычайно надежна и использует обычные детали для реализации конструкции инвертора большой мощности. и может быть повышен до любого желаемого уровня мощности.

Давайте узнаем больше об этой простой конструкции

7) Простейший 100-ваттный инвертор для новичков

Схема простого 100-ваттного инвертора, обсуждаемая в этой статье, может считаться наиболее эффективным, надежным, простым в сборке и мощным инвертором дизайн. Он эффективно преобразует любые 12 В в 220 В с использованием минимального количества компонентов.

Введение

Идея была опубликована много лет назад в одном из журналов по электронике Elecktor. Я представляю ее здесь, чтобы вы все могли создать и использовать эту схему в своих личных приложениях.Узнаем больше.

Предлагаемая простая схема инвертора на 100 ватт была опубликована довольно давно в одном из электронных журналов elektor, и, на мой взгляд, эта схема - одна из лучших схем инвертора, которую вы можете получить.

Я считаю его лучшим, потому что конструкция хорошо сбалансирована, хорошо рассчитана, использует обычные детали, и если все будет сделано правильно, то сразу заработает.

Эффективность этой конструкции составляет около 85%, что хорошо, учитывая простой формат и низкую стоимость.

Использование нестабильного транзистора в качестве генератора 50 Гц

В основном вся конструкция построена вокруг каскада нестабильного мультивибратора, состоящего из двух маломощных транзисторов общего назначения BC547 вместе с соответствующими частями, состоящими из двух электролитических конденсаторов и некоторых резисторов.

Этот каскад отвечает за генерацию основных импульсов 50 Гц, необходимых для запуска работы инвертора.

Вышеупомянутые сигналы относятся к низким текущим уровням и, следовательно, требуют повышения до более высоких уровней.Это делается с помощью транзисторов драйвера BD680, которые по своей природе являются дарлингтонскими.

Эти транзисторы принимают сигналы малой мощности с частотой 50 Гц от транзисторных каскадов BC547 и поднимают их при более высоких уровнях тока, чтобы их можно было подать на выходные транзисторы.

Выходные транзисторы представляют собой пару 2N3055, которые получают усиленный ток в своих базах от вышеупомянутого каскада драйвера.

Транзисторы 2N3055 как силовой каскад

Транзисторы 2N3055, таким образом, также работают с высоким уровнем насыщения и высоким током, который попеременно накачивается на соответствующие обмотки трансформатора и преобразуется в требуемые напряжения переменного тока 220 В на вторичной обмотке трансформатора.

Список деталей для объясненной выше простой схемы инвертора на 100 Вт
  • R1, R2 = 27K, 1/4 Вт 5%
  • R3, R4, R5, R6 = 330 Ом, 1/4 Вт 5%
  • R7, R8 = 22 ОМ, ТИП НАВИВКИ ПРОВОДА 5 Вт
  • C1, C2 = 470nF
  • T1, T2 = BC547,
  • T3, T4 = BD680, ИЛИ TIP127
  • T5, T6 = 2N3055,
  • D1, D2 = 1N5402
  • ТРАНСФОРМАТОР = 9-0-9 В, 5 ампер
  • БАТАРЕЯ = 12 В, 26 Ач,

Радиатор для T3 / T4 и T5 / T6

Технические характеристики:

  1. Выходная мощность: 100 Вт если на каждом канале используются одиночные транзисторы 2n3055.
  2. Частота: 50 Гц, прямоугольная волна,
  3. Входное напряжение: 12 В при 5 А для 100 Вт,
  4. Выходное напряжение: 220 В или 120 В (с некоторыми настройками) как построить эти 7 простых инверторных схем, сконфигурировав данную базовую схему генератора с BJT-каскадом и трансформатором, и включив очень обычные детали, которые могут уже существовать у вас или доступны при утилизации старой собранной печатной платы.

    Как рассчитать резисторы и конденсаторы для частот 50 Гц или 60 Гц

    В этой транзисторной схеме инвертора конструкция генератора построена с использованием транзисторной нестабильной схемы.

    В основном резисторы и конденсаторы, связанные с базами транзисторов, определяют частоту выхода. Хотя они правильно рассчитаны для получения частоты приблизительно 50 Гц, если вы хотите дополнительно настроить выходную частоту в соответствии с собственными предпочтениями, вы можете легко сделать это, рассчитав их с помощью этого калькулятора нестабильного мультивибратора .

    Универсальный двухтактный модуль

    Если вы заинтересованы в достижении более компактной и эффективной конструкции с помощью простой двухпроводной двухтактной конфигурации трансформатора, то вы можете попробовать следующую пару концепций

    В первом из них используется IC 4047 вместе с парой полевых МОП-транзисторов с каналом p и n:

    Если вы хотите использовать какой-либо другой каскад генератора в соответствии с вашими предпочтениями, в этом случае вы можете применить следующий универсальный дизайн.

    Это позволит вам интегрировать любой желаемый каскад генератора и получить требуемый двухтактный выход 220 В.

    Кроме того, он также имеет встроенное зарядное устройство с автоматическим переключением.

    Преимущества простого двухтактного инвертора

    Основными преимуществами этой универсальной конструкции двухтактного инвертора являются:

    • В нем используется 2-проводный трансформатор, что делает конструкцию высокоэффективной с точки зрения размера и выходной мощности.
    • Он включает в себя переключение с зарядным устройством, которое заряжает батарею при наличии сети, а во время сбоя сети переключается в инверторный режим, используя ту же батарею для выработки намеченных 220 В от батареи.
    • Он использует обычные p-канальные и N-канальные MOSFET без каких-либо сложных схем.
    • Он дешевле в сборке и более эффективен, чем аналог центрального смесителя.
    УНИВЕРСАЛЬНЫЙ МОДУЛЬ МОП-транзистора с вытяжной муфтой, который будет взаимодействовать с любой желаемой схемой осциллятора

    Для опытных пользователей

    Выше было объяснено несколько простых схем инвертора, однако, если вы думаете, что они довольно обычные для вас, вы всегда можете изучить более продвинутые проекты, представленные на этом веб-сайте.Вот еще несколько ссылок для справки:


    Другие проекты инверторов для вас с полной онлайн-справкой!


    О компании Swagatam

    Я инженер-электронщик (dipIETE), любитель, изобретатель, разработчик схем / печатных плат, производитель. Я также являюсь основателем веб-сайта: https://www.homemade-circuits.com/, где я люблю делиться своими инновационными идеями и руководствами по схемам.
    Если у вас есть какие-либо вопросы, связанные со схемой, вы можете взаимодействовать с ними через комментарии, я буду очень рад помочь!

    .

    Самодельная схема сетевого инвертора от 100 ВА до 1000 ВА

    Следующая концепция описывает простую, но жизнеспособную схему связующего инвертора солнечной сети, которую можно соответствующим образом модифицировать для выработки мощности от 100 до 1000 ВА и выше.

    Что такое сетевой инвертор

    Это инверторная система, предназначенная для работы так же, как обычный инвертор, использующий входную мощность постоянного тока, за исключением того, что выходной сигнал подается обратно в электрическую сеть.

    Эта добавленная мощность в сеть может быть предназначена для обеспечения постоянно растущего спроса на электроэнергию, а также для получения пассивного дохода от коммунальной компании в соответствии с их условиями (применимыми только в некоторых странах).

    Для реализации описанного выше процесса гарантируется, что выходной сигнал инвертора идеально синхронизирован с мощностью сети с точки зрения среднеквадратичного значения, формы волны, частоты и полярности, чтобы предотвратить неестественное поведение и проблемы.

    Предлагаемая мною концепция - это еще одна схема инвертора связи с сетью (не проверена), которая даже проще и разумнее, чем предыдущая конструкция.

    Схема может быть понята с помощью следующих пунктов:

    Как работает схема GTI

    Сеть переменного тока от сети подается на TR1, который представляет собой понижающий трансформатор.

    TR1 понижает входное напряжение сети до 12 В и выпрямляет его с помощью мостовой схемы, образованной четырьмя диодами 1N4148.

    Выпрямленное напряжение используется для питания микросхем через отдельные диоды 1N4148, подключенные к соответствующим выводам микросхем, в то время как соответствующие конденсаторы емкостью 100 мкФ обеспечивают надлежащую фильтрацию напряжения.

    Выпрямленное напряжение, полученное сразу после моста, также используется в качестве входов обработки для двух ИС.

    Поскольку вышеупомянутый сигнал (см. Изображение формы волны №1) не фильтруется, он состоит из частоты 100 Гц и становится сигналом выборки для обработки и обеспечения необходимой синхронизации.

    Сначала он подается на вывод №2 IC555, где его частота используется для сравнения с пилообразными волнами (см. Форму сигнала №2) на выводе №6 / 7, полученными с коллектора транзистора BC557.

    Приведенное выше сравнение позволяет ИС создавать намеченный выход ШИМ синхронно с частотой электросети.

    Сигнал от моста также подается на контакт № 5, который фиксирует среднеквадратичное значение выходного ШИМ, точно совпадающее с формой сигнала сетки (см. Сигнал № 3).

    Однако в этот момент выходной сигнал от 555 имеет низкую мощность, и его необходимо повысить, а также обработать, чтобы он реплицировал и генерировал обе половины сигнала переменного тока.

    Для выполнения вышеизложенного включены 4017 и ступень mosfet.

    100 Гц / 120 Гц от моста также принимаются 4017 на его выводе № 14, что означает, что теперь его выходной сигнал будет последовательно повторяться от контакта № 3 обратно к контакту № 3, так что МОП-транзисторы переключаются в тандеме и точно на частота 50 Гц, что означает, что каждый МОП-транзистор будет проводить поочередно 50 раз в секунду.

    МОП-транзисторы реагируют на вышеупомянутые действия со стороны IC4017 и генерируют соответствующий двухтактный эффект на подключенном трансформаторе, который, в свою очередь, создает необходимое сетевое напряжение переменного тока на его вторичной обмотке.

    Это может быть реализовано путем подачи постоянного тока на МОП от возобновляемого источника или батареи.

    Однако указанное выше напряжение будет обычной прямоугольной волной, не соответствующей форме волны в сети, до тех пор, пока мы не включим сеть, состоящую из двух диодов 1N4148, подключенных к затворам МОП-транзисторов и контакту № 3 IC555.

    Вышеупомянутая сеть отсекает прямоугольные волны на затворах MOSFTS точно по отношению к шаблону PWM или, другими словами, вырезает прямоугольные волны, точно соответствующие форме сигнала переменного тока сетки, хотя и в форме PWM (см. Форму волны № 4).

    Вышеупомянутый вывод теперь возвращается в сетку, точно соответствуя спецификациям и шаблонам сетки.

    Выходная мощность может быть изменена прямо от 100 Вт до 1000 Вт или даже больше путем соответствующего определения входного постоянного тока, МОП-транзисторов и номиналов трансформатора.

    Обсуждаемая схема связующего инвертора солнечной сети остается работоспособной только до тех пор, пока присутствует сетевое питание, в момент сбоя в электросети, TR1 отключает входные сигналы и вся цепь останавливается, что является строго обязательным для сети. Связать инверторные схемы систем.

    Принципиальная схема

    Предполагаемые изображения осциллограмм

    Что-то не так в приведенном выше дизайне

    По словам г-на Селима Явуза, в приведенном выше дизайне было несколько вещей, которые выглядели сомнительными и нуждались в исправлении, давайте послушаем, что он сказал:

    Hi Swag,

    надеюсь, у вас все хорошо.

    Пробовал вашу схему на макетной плате. Вроде работает кроме части pwm. По какой-то причине я получаю двойной бугорок, но не настоящий ШИМ. Не могли бы вы помочь мне понять, как 555 делает pwm? Я заметил, что 2.2k и 1u создают нарастание 10 мс. Я считаю, что рампа должна быть намного быстрее, так как полуволна составляет 10 мс. Может я кое-что упустил.

    Кроме того, 4017 выполняет чистую работу, успешно переключаясь вперед и назад. Когда вы включаете питание, тактовая частота 100 Гц заставляет счетчик всегда начинать с нуля. Как мы можем гарантировать, что он всегда находится в фазе с сеткой?

    Ценю вашу помощь и идеи.
    С уважением,
    Селим

    Решение проблем со схемой

    Привет Селим,

    Спасибо за обновление.
    Вы абсолютно правы, треугольные волны должны быть намного выше по частоте по сравнению с входом модуляции на выводе №5.
    Для этого мы могли бы пойти на отдельную микросхему 555 с частотой 300 Гц (приблизительно), нестабильную для питания контакта 2 ШИМ IC 555.
    Это решит все проблемы, по моему мнению.
    4017 должен быть синхронизирован через 100 Гц, полученный от мостового выпрямителя, и его контакты 3, 2 должны использоваться для управления вентилями, а контакты 4 должны быть подключены к контакту 15. Это обеспечит идеальную синхронизацию с частотой сети.
    С уважением.

    Окончательный дизайн в соответствии с приведенным выше разговором

    Приведенная выше диаграмма была перерисована ниже с отдельными номерами деталей и обозначениями перемычек

    ПРЕДУПРЕЖДЕНИЕ: ИДЕЯ ОСНОВАНА ТОЛЬКО НА ИСКЛЮЧИТЕЛЬНОМ МОДЕЛИРОВАНИИ, ДИСКРЕТАЦИЯ ЗРЕНИЯ СТРОГО РЕКОМЕНДУЕТСЯ .

    Основной проблемой вышеупомянутой конструкции, с которой столкнулись многие конструкторы, был нагрев одного из МОП-транзисторов во время работы GTI. Возможная причина и способ устранения, предложенные г-ном.Hsen представлен ниже.

    Предлагаемое исправление на стадии mosfet, рекомендованное г-ном Хсеном, также прилагается здесь под, надеюсь, указанные модификации помогут постоянно контролировать проблему:

    Здравствуйте, мистер. Swagatam:

    Я снова посмотрел вашу схему и твердо убежден, что затворы полевых МОП-транзисторов будут достигать модулирующего сигнала (HF PWM), а не простого сигнала 50 cs. Поэтому я настаиваю на том, чтобы включить более мощный драйвер CD4017, а последовательное сопротивление должно иметь гораздо меньшее значение.

    Еще одна вещь, которую следует учитывать, это то, что на стыке резистора и затвора не должно быть еще одного добавленного элемента, и в этом случае я вижу переход к диодам 555.

    Потому что это может быть причиной того, что один из полевых транзисторов нагревается. потому что он может автоколебаться. Поэтому я думаю, что МОП-транзистор нагревается из-за колебаний, а не из-за выходного трансформатора.

    Извините, но меня беспокоит, что ваш проект увенчается успехом, потому что я чувствую себя очень хорошо, и я не собираюсь критиковать.

    С уважением, hsen

    Улучшенный драйвер Mosfet

    В соответствии с предложениями г-на Хсена, следующий буфер BJT может быть использован для обеспечения большей безопасности и контроля работы mosfet.

    О компании Swagatam

    Я инженер-электронщик (dipIETE), любитель, изобретатель, разработчик схем / печатных плат, производитель. Я также являюсь основателем веб-сайта: https://www.homemade-circuits.com/, где я люблю делиться своими инновационными идеями и руководствами по схемам.
    Если у вас есть какие-либо вопросы, связанные со схемами, вы можете взаимодействовать с ними через комментарии, я буду очень рад помочь!

    .

    3 Лучшие схемы бестрансформаторного инвертора

    Как следует из названия, схема инвертора, которая преобразует входной постоянный ток в переменный, независимо от катушки индуктивности или трансформатора, называется бестрансформаторным инвертором.

    Поскольку трансформатор на основе катушки индуктивности не используется, входной постоянный ток обычно равен пиковому значению переменного тока, генерируемого на выходе инвертора.

    Этот пост помогает нам понять 3 схемы инвертора, предназначенные для работы без использования трансформатора, с использованием полной мостовой ИС и схемы генератора SPWM.

    Бестрансформаторный инвертор с использованием IC 4047

    Начнем с топологии H-Bridge, которая, вероятно, является самой простой по своей форме. Однако технически он не идеален и не рекомендуется, так как он разработан с использованием p / n-канальных МОП-транзисторов. МОП-транзисторы с P-каналом используются в качестве МОП-транзисторов с высокой стороны, а n-канальные - с нижней стороны.

    Так как МОП-транзисторы с p-каналом используются на стороне высокого уровня, в начальной загрузке нет необходимости, и это значительно упрощает конструкцию. Это также означает, что эта конструкция не обязательно зависит от специальных микросхем драйверов.

    Хотя дизайн выглядит круто и соблазнительно, у него есть несколько основных недостатков. Именно поэтому этой топологии избегают в профессиональных и коммерческих подразделениях.

    Тем не менее, если он построен правильно, может служить цели для низкочастотных приложений.

    Вот полная схема, использующая IC 4047 в качестве генератора частоты нестабильного тотемного полюса

    Список деталей

    Все резисторы 1/4 Вт 5%

    • R1 = 56 кОм
    • C1 = 0.1 мкФ / PPC
    • IC pin10 / 11 резистор = 330 Ом - 2 шт.
    • MOSFET резисторы затвора = 100 кОм - 2 шт.
    • Оптопары = 4N25 - 2 шт.
    • MOSFET с верхним каналом = FQP4P40 - 2 шт. Канальные МОП-транзисторы = IRF740 = 2 шт.
    • Стабилитроны = 12 В, 1/2 Вт - 2 шт.

    Следующая идея также представляет собой схему с h-мостом, но в ней используются рекомендуемые n-канальные МОП-транзисторы. Схема была запрошена г-ном Ральфом Вихертом

    Основные характеристики

    Привет из Сент-Луиса, штат Миссури.
    Хотели бы вы сотрудничать в проекте инвертора? Я заплачу вам за дизайн и / или ваше время, если хотите.

    У меня Prius 2012 и 2013 годов, а у мамы Prius 2007 года выпуска. Prius уникален тем, что он имеет высоковольтную аккумуляторную батарею 200 В постоянного тока (номинальное). Владельцы Prius в прошлом подключались к этой аккумуляторной батарее со стандартными инверторами для вывода собственного напряжения и запуска инструментов и приборов. (Здесь, в США, 60 Гц, 120 и 240 В переменного тока, как я уверен, вы знаете).Проблема в том, что эти инверторы больше не производятся, но Prius все еще существует.

    Вот пара инверторов, которые использовались в прошлом для этой цели:

    1) PWRI2000S240VDC (см. Приложение) Больше не производится!

    2) Emerson Liebert Upstation S (на самом деле это ИБП, но вы снимаете батарейный блок, номинальное напряжение которого составляло 192 В постоянного тока) (см. Приложение). Больше не производится!

    В идеале, я хочу разработать инвертор непрерывного действия мощностью 3000 Вт, чистый синусоидальный сигнал, выход 60 Гц, 120 В переменного тока (с разделенной фазой 240 В переменного тока, если возможно) и без трансформатора.Возможно пиковая мощность 4000-5000 Вт. Вход: 180-240 В постоянного тока. Я знаю, что это список желаний.

    Я инженер-механик, имею некоторый опыт построения схем, а также программирования микроконтроллеров Picaxe. У меня просто нет большого опыта в разработке схем с нуля. Я готов попробовать и потерпеть неудачу, если понадобится!

    The Design

    В этом блоге я уже обсуждал более 100 конструкций и концепций инверторов, вышеуказанный запрос можно легко выполнить, изменив один из моих существующих проектов и попробовав его для данного приложения.

    Для любой бестрансформаторной конструкции должна быть предусмотрена пара основных вещей для реализации: 1) инвертор должен быть полным мостовым инвертором, использующим полный мостовой драйвер, и 2) подаваемый входной источник постоянного тока должен быть равен требуемому выходу пиковый уровень напряжения.

    С учетом двух вышеупомянутых факторов, базовая конструкция инвертора мощностью 3000 Вт может быть представлена ​​на следующей диаграмме, которая имеет характеристику чистой синусоидальной формы выходного сигнала .

    Функциональные детали инвертора можно понять с помощью следующих пунктов:

    Базовая или стандартная конфигурация полного моста инвертора формируется IC IRS2453 полного моста и связанной с ней сетью mosfet.

    Расчет частоты инвертора

    Функция этого каскада состоит в колебании подключенной нагрузки между МОП-транзисторами с заданной частотой, определяемой значениями сети Rt / Ct.

    Значения этих синхронизирующих компонентов RC могут быть установлены по формуле: f = 1 / 1.453 x Rt x Ct, где Rt выражается в Омах, а Ct - в Фарадах. Он должен быть настроен на достижение 60 Гц для дополнения указанного выхода 120 В, в качестве альтернативы для спецификаций 220 В это может быть изменено на 50 Гц.

    Этого также можно достичь с помощью практических проб и ошибок, оценив диапазон частот с помощью цифрового частотомера.

    Для достижения чистого синусоидального сигнала затворы МОП-транзисторов нижнего уровня отсоединены от соответствующих каналов ИС и применяются через каскад буфера BJT, сконфигурированный для работы через вход SPWM.

    Генерация SPWM

    SPWM, который обозначает широтно-синусоидальную модуляцию импульса, сконфигурирован на основе ИС операционного усилителя и одного генератора ШИМ IC 555.

    Хотя IC 555 сконфигурирован как ШИМ, выход ШИМ с его контакта №3 никогда не используется, скорее треугольные волны, генерируемые на его временном конденсаторе, используются для резьбы SPWM. Здесь одна из выборок треугольной волны должна быть намного медленнее по частоте и синхронизирована с частотой основной ИС, в то время как другая должна быть более быстрой треугольной волной, частота которой по существу определяет количество столбов, которые может иметь SPWM.

    Операционный усилитель сконфигурирован как компаратор и питается выборками треугольной волны для обработки требуемых SPWM.Одна треугольная волна, которая является более медленной, извлекается из распиновки Ct основной микросхемы IRS2453

    . Обработка выполняется микросхемой операционного усилителя путем сравнения двух треугольных волн на ее входных выводах, и сгенерированный SPWM применяется к базам буферный каскад BJT.

    Буферы BJT переключаются в соответствии с импульсами SPWM и гарантируют, что МОП-транзисторы нижнего уровня также переключаются по той же схеме.

    Вышеупомянутое переключение позволяет выходному переменному току также переключаться с шаблоном SPWM для обоих периодов частотной формы сигнала переменного тока.

    Выбор МОП-транзисторов

    Поскольку указан бестрансформаторный инвертор мощностью 3 кВА, МОП-транзисторы должны иметь соответствующие характеристики для работы с этой нагрузкой.

    МОП-транзистор 2SK 4124, указанный на схеме, на самом деле не сможет выдержать нагрузку 3 кВА, поскольку они рассчитаны на максимальную нагрузку 2 кВА.

    Некоторые исследования в сети позволяют нам найти МОП-транзистор: IRFB4137PBF-ND , который хорошо подходит для работы с нагрузкой более 3 кВА из-за его большой номинальной мощности 300 В / 38 ампер.

    Поскольку это бестрансформаторный инвертор на 3 кВА, вопрос о выборе трансформатора отпадает, однако батареи должны иметь соответствующий номинал, чтобы вырабатывать минимум 160 В при умеренной зарядке и около 190 В при полной зарядке.

    Автоматическая коррекция напряжения.

    Автоматическая коррекция может быть достигнута путем подключения цепи обратной связи между выходными клеммами и распиновкой Ct, но на самом деле это может не потребоваться, поскольку потенциометры IC 555 могут эффективно использоваться для фиксации RMS выходного напряжения, и один раз можно ожидать, что выходное напряжение будет абсолютно фиксированным и постоянным независимо от условий нагрузки, но только до тех пор, пока нагрузка не превышает максимальную мощность инвертора.

    2) Бестрансформаторный инвертор с зарядным устройством и системой управления с обратной связью

    Вторая принципиальная схема компактного трансформатора без встроенного громоздкого железного трансформатора обсуждается ниже. Вместо тяжелого железного трансформатора в нем используется индуктор с ферритовым сердечником, как показано в следующей статье. Схема разработана не мной, она была предоставлена ​​мне одним из заядлых читателей этого блога г-ном Ритешем.

    Конструкция представляет собой полноценную конфигурацию, включающую большинство функций, таких как детали обмотки ферритового трансформатора, ступень индикатора низкого напряжения, средство регулирования выходного напряжения и т. Д.

    Объяснение вышеупомянутого дизайна еще не обновлено, я постараюсь обновить его в ближайшее время, а пока вы можете обратиться к диаграмме и прояснить свои сомнения с помощью комментариев, если таковые имеются.

    Компактный бестрансформаторный инвертор мощностью 200 Вт # 3

    Третий вариант ниже показывает схему инвертора мощностью 200 Вт без трансформатора (бестрансформаторный) с входом 310 В постоянного тока. Это конструкция, совместимая с синусоидальной волной.

    Введение

    Инверторы, как мы знаем, представляют собой устройства, которые преобразуют или, скорее, инвертируют источник постоянного тока низкого напряжения в выход переменного тока высокого напряжения.

    Вырабатываемое высоковольтное выходное напряжение переменного тока обычно соответствует уровню напряжения местной сети. Однако процесс перехода с низкого напряжения на высокое неизменно требует использования массивных и громоздких трансформаторов. Есть ли у нас возможность избежать этого и создать бестрансформаторную схему инвертора?

    Да, существует довольно простой способ реализации конструкции бестрансформаторного инвертора.

    В основном инверторы, использующие батареи низкого напряжения постоянного тока, требуют повышения их до предполагаемого более высокого напряжения переменного тока, что, в свою очередь, требует включения трансформатора.

    Это означает, что если бы мы могли просто заменить входной постоянный ток низкого напряжения на уровень постоянного тока, равный предполагаемому выходному уровню переменного тока, необходимость в трансформаторе могла бы быть просто устранена.

    Принципиальная схема включает в себя высоковольтный вход постоянного тока для работы с простой схемой инвертора MOSFET, и мы можем ясно видеть, что здесь нет трансформатора.

    Работа схемы

    Постоянный ток высокого напряжения, равный требуемому выходному переменному току, полученный путем последовательного подключения 18 небольших 12-вольтных батарей.

    Строб N1 от IC 4093, N1 настроен здесь как генератор.

    Поскольку для ИС требуется строгое рабочее напряжение от 5 до 15 В, необходимый вход берется от одной из 12-вольтных батарей и подается на соответствующие выводы ИС.

    Таким образом, вся конфигурация становится очень простой и эффективной и полностью устраняет необходимость в громоздком и тяжелом трансформаторе.

    Все батареи рассчитаны на 12 В, 4 Ач, они довольно малы и даже при соединении вместе не занимают слишком много места.Их можно плотно сложить друг на друга, образуя компактный блок.

    На выходе будет 110 В переменного тока при 200 Вт.

    Список деталей
    • Q1, Q2 = MPSA92
    • Q3 = MJE350
    • Q4, Q5 = MJE340
    • Q6, Q7 = K1058,
    • Q8, Q9 = J162
    • NAND IC = 4093,
    • D = 1N4148
    • Аккумулятор = 12 В / 4 Ач, 18 шт.

    Обновление до синусоидальной версии

    Вышеупомянутая простая схема бестрансформаторного инвертора 220 В может быть модернизирована до синусоидального инвертора, просто заменив входной генератор схемой генератора синусоидальной волны, как показано ниже:

    Список деталей для синусоидальный генератор можно найти в этом посте.

    Схема солнечного инвертора без трансформатора

    Солнце является основным и неограниченным источником чистой энергии, доступной на нашей планете абсолютно бесплатно.Эта энергия в основном находится в форме тепла, однако люди открыли методы использования света этого огромного источника для производства электроэнергии.

    Обзор

    Сегодня электричество стало жизненной силой всех городов и даже сельской местности. Поскольку ископаемое топливо истощается, солнечный свет обещает стать одним из основных возобновляемых источников энергии, к которому можно получить доступ прямо из любой точки и при любых обстоятельствах на этой планете бесплатно. Давайте узнаем один из методов преобразования солнечной энергии в электричество для нашей личной выгоды.

    В одном из своих предыдущих постов я обсуждал схему солнечного инвертора, которая имела довольно простой подход и включала топологию обычного инвертора с использованием трансформатора.

    Трансформаторы, как мы все знаем, громоздкие, тяжелые и могут стать довольно неудобными для некоторых приложений.
    В данной конструкции я попытался исключить использование трансформатора, включив высоковольтные МОП-транзисторы и увеличив напряжение путем последовательного соединения солнечных панелей. Давайте изучим всю конфигурацию с помощью следующих пунктов:

    Как это работает

    Глядя на приведенную ниже принципиальную схему бестрансформаторного инвертора на солнечных батареях, мы видим, что она в основном состоит из трех основных этапов, а именно.каскад генератора состоит из универсальной микросхемы IC 555, выходной каскад состоит из пары высоковольтных МОП-транзисторов и каскад подачи энергии, который использует батарею солнечных панелей, которая питается от B1 и B2.

    Принципиальная схема

    Поскольку ИС не может работать при напряжениях более 15 В, она хорошо защищена понижающим резистором и стабилитроном. Стабилитрон ограничивает высокое напряжение от солнечной панели при подключенном стабилитроне 15 В.

    Однако МОП-транзисторы могут работать с полным выходным напряжением солнечной батареи, которое может составлять от 200 до 260 вольт.В пасмурную погоду напряжение может упасть ниже 170 В. Поэтому, вероятно, на выходе можно использовать стабилизатор напряжения для регулирования выходного напряжения в таких ситуациях.

    МОП-транзисторы относятся к типам N и P, которые образуют пару для реализации двухтактных действий и для генерации необходимого переменного тока.

    МОП-транзисторы не указаны на схеме, в идеале они должны быть рассчитаны на 450 В и 5 ампер, вы встретите много вариантов, если немного погуглите в сети.

    Используемые солнечные панели должны строго иметь напряжение холостого хода около 24 В при полном солнечном свете и около 17 В в периоды ярких сумерек.

    Как подключить солнечные панели

    Список деталей

    R1 = 6K8
    R2 = 140K
    C1 = 0,1 мкФ
    Диоды = 1N4148
    R3 = 10K, 10 Вт,
    R4, R5 = 100 Ом, 1 / 4 Вт
    B1 и B2 = от солнечной панели
    Z1 = 5,1 В 1 Вт

    Используйте эти формулы для расчета R1, R2, C1 ....

    Обновление:

    Конструкция микросхемы 555 выше может быть не такой надежной и эффективная, очень надежная конструкция показана ниже в виде полной схемы инвертора H-моста.Можно ожидать, что эта конструкция обеспечит гораздо лучшие результаты, чем указанная выше схема 555 IC

    Еще одно преимущество использования указанной схемы состоит в том, что вам не потребуется установка с двумя солнечными панелями, скорее всего будет достаточно одного последовательного солнечного источника питания для Используйте указанную выше схему для достижения выходного напряжения 220 В.

    О Swagatam

    Я инженер-электронщик (dipIETE), любитель, изобретатель, разработчик схем / печатных плат, производитель. Я также являюсь основателем сайта: https: // www.homemade-circuits.com/, где я люблю делиться своими новаторскими идеями и руководствами по схемам.
    Если у вас есть какой-либо вопрос, связанный со схемой, вы можете взаимодействовать с ним через комментарии, я буду очень рад помочь!

    .

    Смотрите также