Вход на сайт

Зарегистрировавшись на сайте Вы сможете добавлять свои материалы






Самодельный трехфазный полуавтомат


Сварочный полуавтомат 30А - 160А своими руками » Журнал практической электроники Датагор (Datagor Practical Electronics Magazine)


Технические данные нашего сварочного аппарата — полуавтомата:
Напряжение питающей сети: 220 В
Потребляемая мощность: не более 3 кВа
Режим работы: повторно-кратковременный
Регулирование рабочего напряжения: ступенчатое от 19 В до 26 В
Скорость подачи сварочной проволоки: 0-7 м/мин
Диаметр проволоки: 0.8 мм
Величина сварочного тока: ПВ 40% — 160 А, ПВ 100% — 80 А
Предел регулирования сварочного тока: 30 А — 160 А

Всего с 2003 года было сделано шесть подобных аппаратов. Аппарат, представленный далее на фото, работает с 2003 года в автосервисе и ни разу не подвергался ремонту.

Содержание / Contents


Вообще


Вид спереди


Вид сзади


Вид слева


В качестве сварочной проволоки используется стандартная
5кг катушка проволоки диаметром 0,8мм
Сварочная горелка 180 А вместе с евроразъемом
была куплена в магазине сварочного оборудования.Ввиду того что схема полуавтомата анализировалась с таких аппаратов как ПДГ-125, ПДГ-160, ПДГ-201 и MIG-180, принципиальная схема отличается от монтажной платы, т. к. схема вырисовывалась на лету в процессе сборки. Поэтому лучше придерживаться монтажной схемы. На печатной плате все точки и детали промаркированы (откройте в Спринте и наведите мышку).

Печатка, см. чертеж в архиве
Вид на монтаж

Плата управления

В качестве выключателя питания и защиты применен однофазный автомат типа АЕ на 16А. SA1 — переключатель режимов сварки типа ПКУ-3-12-2037 на 5 положений.

Резисторы R3, R4 — ПЭВ-25, но их можно не ставить (у меня не стоят). Они предназначены для быстрой разрядки конденсаторов дросселя.

Теперь по конденсатору С7. В паре с дросселем он обеспечивает стабилизацию горения и поддержания дуги. Минимальная емкость его должна быть не менее 20000 мкф, оптимальная 30000 мкф. Были испробованы несколько типов конденсаторов с меньшими габаритами и большей емкостью, например CapXon, Misuda, но они себя проявили не надежно, выгорали.


В итоге были применены советские конденсаторы, которые работают по сей день, К50-18 на 10000 мкф х 50В в количестве трёх штук в параллель.

Силовые тиристоры на 200А взяты с хорошим запасом. Можно поставить и на 160 А, но они будут работать на пределе, потребуется применение хороших радиаторов и вентиляторов. Примененные В200 стоят на не большой алюминиевой пластине.

Реле К1 типа РП21 на 24В, переменный резистор R10 проволочный типа ППБ.

При нажатии на горелке кнопки SB1 подается напряжение на схему управления. Срабатывает реле К1, тем самым через контакты К1-1 подается напряжение на электромагнитный клапан ЭМ1 подачи кислоты, и К1-2 — на схему питания двигателя протяжки проволоки, и К1-3 — на открытие силовых тиристоров.

Переключателем SA1 выставляют рабочее напряжение в диапазоне от 19 до 26 Вольт (с учетом добавки 3 витков на плечо до 30 Вольт). Резистором R10 регулируют подачу сварочной проволоки, меняют ток сварки от 30А до 160 А.

При настройке резистор R12 подбирают таким образом, чтобы при выкрученном R10 на минимум скорости двигатель все же продолжал вращаться, а не стоял.

При отпускании кнопки SB1 на горелке — реле отпускает, останавливается мотор и закрываются тиристоры, электромагнитный клапан за счет заряда конденсатора С2 еще продолжает оставаться открытым подавая кислоту в зону сварки.

При закрытии тиристоров исчезает напряжение дуги, но за счет дросселя и конденсаторов С7 напряжение снимается плавно, не давая сварочной проволоке прилипнуть в зоне сварки.


Берем трансформатор ОСМ-1 (1кВт), разбираем его, железо откладываем в сторону, предварительно пометив его. Делаем новый каркас катушки из текстолита толщиной 2 мм, (родной каркас слишком слабый). Размер щеки 147×106мм. Размер остальных частей: 2 шт. 130×70мм и 2 шт. 87×89мм. В щеках вырезаем окно размером 87×51,5 мм.
Каркас катушки готов.
Ищем обмоточный провод диаметром 1,8 мм, желательно в усиленной, стекловолоконной изоляции. Я взял такой провод со статорных катушек дизель-генератора). Можно применить и обычный эмальпровод типа ПЭТВ, ПЭВ и т. п.

Стеклоткань — на мой взгляд, самая лучшая изоляция получается
Начинаем намотку — первичка. Первичка содержит 164 + 15 + 15 + 15 + 15 витков. Между слоями делаем изоляцию из тонкой стеклоткани. Провод укладывать как можно плотнее, иначе не влезет, но у меня обычно с этим проблем не было. Я брал стеклоткань с останков всё того же дизель-генератора. Все, первичка готова.

Продолжаем мотать — вторичка. Берем алюминиевую шину в стеклянной изоляции размером 2,8×4,75 мм, (можно купить у обмотчиков). Нужно примерно 8 м, но лучше иметь небольшой запас. Начинаем мотать, укладывая как можно плотнее, мотаем 19 витков, далее делаем петлю под болт М6, и снова 19 витков, Начала и концы делаем по 30 см, для дальнейшего монтажа.
Тут небольшое отступление, лично мне для сварки крупных деталей при таком напряжении было маловато току, в процессе эксплуатации я перемотал вторичную обмотку, прибавив по 3 витка на плечо, итого у меня получилось 22+22.
Обмотка влезает впритык, поэтому если мотать аккуратно, все должно получиться.
Если на первичку брать эмальпровод, то потом обязательно пропитка лаком, я держал катушку в лаке 6 часов.

Собираем трансформатор, включаем в розетку и замеряем ток холостого хода около 0,5 А, напряжение на вторичке от 19 до 26 Вольт. Если все так, то трансформатор можно отложить в сторону, он пока нам больше не нужен.

Вместо ОСМ-1 для силового трансформатора можно взять 4шт ТС-270, правда там немного другие размеры, и я делал на нем только 1 сварочный аппарат, то данные для намотки уже не помню, но это можно посчитать.

Берем трансформатор ОСМ-0,4 (400Вт), берем эмальпровод диаметром не менее 1,5 мм (у меня 1,8). Мотаем 2 слоя с изоляцией между слоями, укладываем плотненько. Дальше берем алюминиевую шину 2,8×4,75 мм. и мотаем 24 витка, свободные концы шины делаем по 30 см. Собираем сердечник с зазором 1 мм (проложить кусочки текстолита).
Дроссель также можно намотать на железе от цветного лампового телевизора типа ТС-270. На него ставится только одна катушка.

У нас остался еще один трансформатор для питания схемы управления (я брал готовый). Он должен выдавать 24 вольта при токе около 6А.

С трансами разобрались, приступаем к корпусу. На чертежах не показаны отбортовки по 20 мм. Углы свариваем, все железо 1,5 мм. Основание механизма сделано из нержавейки.

Подробные чертежи корпуса см. в приложении.



Мотор М применен от стеклоочистителя ВАЗ-2101.
Убран концевик возврата в крайнее положение.

В подкатушечнике для создания тормозного усилия применена пружина, первая попавшаяся под руку. Тормозной эффект увеличивается сжиманием пружины (т. е. закручиванием гайки).

▼ Файловый сервис недоступен. Зарегистрируйтесь или авторизуйтесь на сайте.

▼ Файловый сервис недоступен. Зарегистрируйтесь или авторизуйтесь на сайте.

Камрад, рассмотри датагорские рекомендации

Андрей (bedjamen)

Вологда

Логин bedjamen - это был мой пёс, эрдельтерьер, по кличке Беджамен Моден Тайп Хауэлл. Дата его рождения 7 апреля 2002 года.

Мои поделки за последние несколько лет:
https://yadi.sk/d/4_KITmRVcARCX

 

Как сделать трехфазную схему частотно-регулируемого привода

Представленная трехфазная схема частотно-регулируемого привода (, разработанная мной, ) может использоваться для управления скоростью любого трехфазного щеточного двигателя переменного тока или даже бесщеточного двигателя переменного тока. Идея была предложена г-ном Томом

Использование частотно-регулируемого привода

Предлагаемая трехфазная схема частотно-регулируемого привода может универсально применяться для большинства трехфазных двигателей переменного тока, где эффективность регулирования не слишком важна.

Его можно специально использовать для управления скоростью асинхронного двигателя с короткозамкнутым ротором в режиме разомкнутого контура и, возможно, также в режиме замкнутого контура, который будет обсуждаться в более поздней части статьи.

Модули, необходимые для 3-фазного инвертора

Для проектирования предлагаемой схемы трехфазного частотно-регулируемого привода или частотно-регулируемого привода по существу необходимы следующие основные этапы схемы:

  1. Схема ШИМ-регулятора напряжения
  2. Трехфазный H-мост со стороны высокого / низкого давления Схема драйвера
  3. Схема трехфазного генератора
  4. Схема преобразователя напряжения в частоту для генерации параметра В / Гц.

Давайте изучим детали функционирования вышеперечисленных этапов с помощью следующего пояснения:

Простую схему контроллера напряжения PWM можно увидеть на схеме, приведенной ниже:

Контроллер PWM

Я уже включил и объяснил функционирование вышеуказанного каскада генератора ШИМ, который в основном предназначен для генерации переменного выходного сигнала ШИМ на выводе 3 микросхемы IC2 в ответ на потенциал, приложенный к выводу 5 той же микросхемы.

Предустановка 1K, показанная на схеме, представляет собой ручку управления среднеквадратичным значением, которую можно соответствующим образом отрегулировать для получения желаемой пропорциональной величины выходного напряжения в форме ШИМ на выводе 3 IC2 для дальнейшей обработки. Он настроен на создание соответствующего выходного сигнала, который может быть эквивалентен среднеквадратическому напряжению сети 220 В или 120 В переменного тока.

Схема драйвера H-моста

На следующей схеме ниже показана схема трехфазного драйвера H-моста с одной микросхемой, использующая микросхему IRS2330.

Дизайн выглядит незамысловатым, поскольку большая часть сложностей решается встроенными в микросхемы сложной схемой.

Хорошо рассчитанный трехфазный сигнал подается на входы HIN1 / 2/3 и LIN1 / 2/3 IC через каскад генератора трехфазных сигналов.

Выходы IC IRS2330 можно увидеть интегрированными с 6 МОП-транзисторами или мостовой сетью IGBT, стоки которых соответствующим образом настроены с двигателем, которым необходимо управлять.

Затворы МОП-транзистора / БТИЗ на нижней стороне интегрированы с выводом № 3 IC2 описанного выше каскада схемы генератора ШИМ для инициирования инжекции ШИМ в каскад мостового МОП-транзистора.Это регулирование в конечном итоге помогает двигателю набрать желаемую скорость в соответствии с настройками (с помощью предустановки 1 k на первой диаграмме).

На следующей схеме мы визуализируем требуемую схему генератора трехфазных сигналов.

Конфигурирование схемы 3-фазного генератора

Трехфазный генератор построен на паре КМОП-микросхем CD4035 и CD4009, которые генерируют 3-фазные сигналы с точными размерами по показанным выводам.

Частота трехфазных сигналов зависит от поданных входных тактовых импульсов, которые должны быть в 6 раз больше предполагаемого трехфазного сигнала.Это означает, что если требуемая 3-фазная частота составляет 50 Гц, тактовая частота на входе должна быть 50 x 6 = 300 Гц.

Это также означает, что указанные выше тактовые импульсы можно изменять для изменения эффективной частоты ИС драйвера, которая, в свою очередь, будет отвечать за изменение рабочей частоты двигателя.

Однако, поскольку вышеуказанное изменение частоты должно быть автоматическим в ответ на изменение напряжения, преобразователь напряжения в частоту становится важным. На следующем этапе обсуждается простая точная схема преобразователя напряжения в частоту для требуемой реализации.

Как создать постоянное соотношение V / F

Обычно в асинхронных двигателях, чтобы поддерживать оптимальную эффективность скорости и момента вращения двигателя, необходимо контролировать скорость скольжения или скорость ротора, что, в свою очередь, становится возможным при поддержании постоянное соотношение В / Гц. Поскольку магнитный поток статора всегда постоянен независимо от входной частоты питающей сети, скорость ротора становится легко управляемой, поддерживая постоянным отношение В / Гц.

В режиме разомкнутого контура это можно сделать грубо, поддерживая заранее определенные отношения В / Гц и вводя их вручную.Например, на первой диаграмме это можно сделать, соответствующим образом отрегулировав предустановку R1 и 1K. R1 определяет частоту, а 1K регулирует RMS выходного сигнала, поэтому, соответствующим образом отрегулировав два параметра, мы можем вручную установить требуемую величину В / Гц.

Однако, чтобы получить относительно точное управление крутящим моментом и скоростью асинхронного двигателя, мы должны реализовать стратегию замкнутого контура, в которой данные о скорости скольжения должны подаваться в схему обработки для автоматической регулировки отношения В / Гц, чтобы что это значение всегда остается примерно постоянным.

Реализация обратной связи по замкнутому контуру

Первую диаграмму на этой странице можно соответствующим образом изменить для проектирования автоматического регулирования В / Гц с обратной связью, как показано ниже:

На приведенном выше рисунке потенциал на выводе № 5 IC2 определяет ширина SPWM, генерируемого на выводе №3 той же ИС. SPWM генерируются путем сравнения выборки пульсаций напряжения сети 12 В на выводе № 5 с треугольной волной на выводе № 7 микросхемы IC2, и она подается на МОП-транзисторы нижнего уровня для управления двигателем.

Первоначально этот SPWM установлен на некотором настроенном уровне (с использованием 1K perset), который запускает вентили IGBT нижней стороны трехфазного моста для инициирования движения ротора на заданном уровне номинальной скорости.

Как только ротор ротора начинает вращаться, подключенный тахометр с роторным механизмом вызывает пропорциональное увеличение напряжения на выводе № 5 IC2, это пропорционально приводит к расширению SPWM, вызывая большее напряжение на обмотках статора двигатель.Это вызывает дальнейшее увеличение скорости ротора, вызывая большее напряжение на выводе № 5 IC2, и это продолжается до тех пор, пока эквивалентное напряжение SPWM не перестанет увеличиваться, и синхронизация ротора статора не станет устойчивой.

Вышеупомянутая процедура автоматически регулируется в течение всего периода эксплуатации двигателя.

Как сделать и интегрировать тахометр

На следующей диаграмме можно увидеть простую конструкцию тахометра, его можно интегрировать с роторным механизмом, чтобы частота вращения могла питать основание BC547.

Здесь данные о скорости ротора собираются от датчика Холла или сети ИК-светодиодов / датчиков и передаются на базу T1.

T1 колеблется на этой частоте и активирует схему тахометра, созданную путем соответствующей настройки моностабильной схемы IC 555.

Выходной сигнал вышеупомянутого тахометра изменяется пропорционально входной частоте на базе T1.

По мере увеличения частоты напряжение на крайнем правом выходе D3 также растет и наоборот, что помогает поддерживать отношение В / Гц на относительно постоянном уровне.

Как управлять скоростью

Скорость двигателя с использованием постоянного V / F может быть достигнута путем изменения частотного входа на тактовом входе IC 4035. Это может быть достигнуто путем подачи переменной частоты от нестабильной схемы IC 555 или любой другой стандартная нестабильная схема для тактового входа IC 4035.

Изменение частоты эффективно изменяет рабочую частоту двигателя, что соответственно снижает скорость скольжения.

Это обнаруживается тахометром, и тахометр пропорционально снижает потенциал на выводе № 5 микросхемы IC2, который, в свою очередь, пропорционально снижает содержание SPWM на двигателе, и, следовательно, напряжение двигателя уменьшается, обеспечивая изменение скорости двигателя с правильное требуемое соотношение V / F.

Самодельный преобразователь V в F

В приведенной выше схеме преобразователя напряжения в частоту используется микросхема IC 4060, и ее частотно-зависимое сопротивление зависит от сборки светодиодов / LDR для предполагаемых преобразований.

Узел светодиода / LDR запечатан внутри светонепроницаемой коробки, а LDR размещен на частотно-зависимом резисторе 1M IC.

Так как отклик LDR / LDR является довольно линейным, изменяющееся свечение светодиода на LDR генерирует пропорционально изменяющуюся (увеличивающуюся или уменьшающуюся) частоту на выводе 3 ИС.

FSD или диапазон В / Гц каскада можно установить, соответствующим образом настроив резистор 1M или даже значение C1.

Светодиод указывает на то, что напряжение выводится и загорается через ШИМ от первого каскада схемы ШИМ. Это означает, что по мере изменения ШИМ освещение светодиода также будет изменяться, что, в свою очередь, приведет к пропорциональному увеличению или уменьшению частоты на выводе 3 микросхемы IC 4060 на приведенной выше диаграмме.

Интеграция преобразователя с VFD

Эта изменяющаяся частота от IC 4060 теперь просто должна быть интегрирована с входом синхронизации трехфазного генератора IC CD4035.

Вышеупомянутые этапы являются основными составляющими для создания 3-фазной схемы частотно-регулируемого привода.

Теперь было бы важно обсудить шину постоянного тока, необходимую для питания контроллеров двигателей IGBT, и процедуры настройки для всей конструкции.

Шина постоянного тока, подключенная к рельсам H-моста IGBT, может быть получена путем выпрямления доступного трехфазного сетевого входа с использованием следующей конфигурации схемы. Шины IGBT DC BUS подключаются через точки, обозначенные как «нагрузка»

Для однофазного источника выпрямление может быть реализовано с использованием стандартной конфигурации сети с 4 диодными мостами.

Как настроить предлагаемую трехфазную схему частотно-регулируемого привода

Это можно сделать в соответствии со следующими инструкциями:

После подачи напряжения шины постоянного тока на IGBT (без подключенного двигателя) отрегулируйте предустановку PWM 1k до тех пор, пока напряжение на шинах становится равным заданному напряжению двигателя.

Затем отрегулируйте предварительную настройку IC 4060 1M, чтобы настроить любой из входов IC IRS2330 на требуемый правильный уровень частоты в соответствии с заданными характеристиками двигателя.

После завершения вышеуказанных процедур указанный двигатель может быть подключен и запитан с разными уровнями напряжения, параметром В / Гц и подтвержден для автоматических операций В / Гц на подключенном двигателе.

.

Привод трехфазного двигателя от однофазной сети

Привод трехфазного двигателя от однофазной сети напрямую обычными методами может быть трудным и опасным. Для выполнения операций требуются точно спроектированные схемы. Здесь я попытался представить одну такую ​​схему драйвера трехфазного двигателя с ШИМ-управлением. Узнаем больше.

Схему можно понять по следующим пунктам:

Работа схемы

Перед тем, как перейти к следующему объяснению, важно знать о схеме трехфазного генератора сигналов, описанной здесь: https: // homemade-circuitits.com / 2013/09 / three-phase-signal-generator-circuit.html

Вышеупомянутая схема становится важнейшей частью всей конструкции, потому что именно этот этап обеспечивает сигналы с фазовым сдвигом на 120 градусов для управления предлагаемым трехфазным драйвером двигателя. ступени от однофазного источника.

Все задействованные цепи работают от общего источника постоянного тока 12 В, который может быть получен из стандартной конфигурации адаптера переменного / постоянного тока с использованием трансформатора 12 В, моста и конденсаторной сети.

На первой схеме, показанной ниже, мы видим простую схему генератора ШИМ 555, которая генерирует эквивалентные модифицированные синусоидальные волны ШИМ на своем выводе №3.

Они генерируются в ответ на синусоидальные волны на выходах схемы генератора трехфазных сигналов, как объяснено в приведенной выше ссылке.

Это означает, что нам потребуются три таких идентичных каскада генератора ШИМ 555 для обработки трех выходных сигналов операционных усилителей 3-фазного генератора сигналов.

Выходы соответствующих трех генераторов ШИМ, обозначенных как HIN и LIN, подаются на входы трех дискретных схем драйвера MOSFET, показанных на второй диаграмме ниже.

Мы используем IC IR2110 для драйверной части схем, три отдельных драйвера IC используются для обработки трех выходов PWM из 555 секций.

Выходы МОП напрямую связаны с тремя проводами двигателя.

330 В для МОП-транзисторов получается путем выпрямления однофазного переменного тока сети.

Принципиальная схема

О компании Swagatam

Я инженер-электронщик (dipIETE), любитель, изобретатель, разработчик схем / печатных плат, производитель.Я также являюсь основателем веб-сайта: https://www.homemade-circuits.com/, где я люблю делиться своими инновационными идеями и руководствами по схемам.
Если у вас есть какие-либо вопросы, связанные со схемой, вы можете взаимодействовать с ними через комментарии, я буду очень рад помочь!

.

Портативный сварочный полуавтомат 5 кг

Переносной сварочный полуавтомат 5 кг

Выставка продуктов

Этот аппарат идеально подходит как для профессионалов, так и для любителей. Благодаря устройству защиты от перегрева продукт может работать надежно и безопасно. Также он разработан с функцией максимального тока и минимального напряжения. DC MMA - лучшее соотношение цены и качества в своем классе.

Характеристики

  • Высокая эффективность, энергосбережение и легкий вес
  • Компактный размер, простая установка и удобство в эксплуатации
  • Особенность с отличными динамическими характеристиками и стабильной электрической дугой
  • Легкость партии должен контролироваться
  • Режимы защиты от перегрева и питания
  • Безопасный для генератора
  • Легкий и портативный, весит всего 5 кг
  • Гарантия 18 месяцев, доступно обслуживание за границей

В комплект входит

Технические характеристики

Входной источник питания

  • Напряжение источника питания: однофазное 220 В переменного тока ± 10% / 50 Гц (вилка 15 А)
  • Номинальное входное напряжение: 7 кВА (безопасность генератора)

Параметры сварки (MMA)

  • Номинальный ток питания: 28 А
  • Регулировка тока: 30-200 А
  • 90 029 Номинальное выходное напряжение: 28 В
  • Напряжение холостого хода: 60 ​​В
  • Рабочий цикл: 60%
  • Потери холостого хода: 40 Вт
  • КПД: 85%
  • Коэффициент мощности: 0.93
  • Класс изоляции: F

Применение

- Сварка нержавеющей стали, углеродистой стали, чугуна, стали и других сплавов.

-Продукты широко используются в претрохимической, медицинской, электроэнергетической, фармацевтической, цементной, металлургической и горнодобывающей промышленности.

О нас

Сертификаты:

Essen Fair

,


Смотрите также