Вход на сайт

Зарегистрировавшись на сайте Вы сможете добавлять свои материалы






Самодельный терморегулятор для погреба


Терморегулятор для погреба своими руками

Один мой знакомый приятель приобрел гараж с погребом и решил сделать так, чтобы картофель и другие овощи в погребе не промерзали зимой.

Он попросил помочь ему в изготовлении терморегулятора.

Схема простая, доступная для сборки даже начинающим радиолюбителям.

Слепое копирование чьего-то, хотя и вполне работоспособного, устройства — не по мне. Да и ряд соображений побудил заняться модернизацией базового терморегулятора.

Прежде всего, меня не устраивало, что электропитание исходного варианта осуществлялось по так называемой бестрансформаторной схеме, где узлы и элементы — под фазовым, опасным для жизни напряжением. Ведь в погреб не исключено просачивание воды. Да и хозяин хранилища овощей, скажем, в распутицу может запросто промочить ноги. Что если он на мгновение коснется работающего терморегулятора? Это помогло четче сформулировать основное требование к терморегулятору: надежная развязка конструкции от сетевого напряжения, например, при помощи разделительного или понижающего трансформатора и исполнительного реле.

Не устраивала меня и маломощность устройства-прототипа с теплоизлучающей нагрузкой в виде 100-ваттной лампы накаливания. Конечно же, в модернизированной конструкции должен работать нагреватель мощностью не менее 1,5 кВт в сочетании с вентилятором. В случае необходимости его можно использовать для быстрой просушки погреба-овощехранилища.

Но тогда тиристоры устаревшей серии КУ202 и диоды Д245, на которых собрана схема-прототип, должны работать на пределе своих возможностей и перегреваться. Значит, требуется установить их на радиаторы, организовать принудительное охлаждение, электроизолировать друг от друга и от корпуса устройства или использовать более мощные и, как правило, более дорогие и дефицитные аналоги…

Принципиальная электрическая схема

Схема терморегулятора-прототипа (вверху)

и её модернизированный вариант (внизу)

И тут мне подвернулся под руку старый магнитный пускатель марки ПМЕ-074. Это помогло разрешить все проблемы. К тому же удалось при модификации принципиальной электрической схемы терморегулятора ограничиться использованием одного датчика температуры вместо прежних двух.

Тем, кто заинтересуется моей доработкой конструкции, отлично зарекомендовавшей себя в деле, нелишне знать и другие подробности. В частности, что на резисторах R1— RЗ собран делитель 9-вольтного, гальванически не связанного с бытовой электросетью, стабилизированного напряжения питания (с помощью стабилитрона VD1 типа Д814Б). В нижнее плечо его включен 10-килоомный терморезистор КМТ-12, легко заменяемый на ММТ-1, ММТ-9, ММТ-12 и им подобные аналоги. В верхнем плече делителя — два резистора: переменный Р1 (сопротивлением 1,5—2,2 кОм, тип — СПО-0,5 или СПЗ-4а с линейной характеристикой, ручка регулировки вынесена на лицевую панель с градуировкой «коррекция») и подстроечный R2 (15—47 кОм, СПЗ-16, «грубая установка»).

Печатная плата терморегулятора

Ярко выраженная зависимость сопротивления терморезистора от температуры позволяет использовать его в качестве датчика, изменяющего напряжение на соединенных входах 1 и 2 логического элемента DD1.1 микросхемы К561ЛА7. Ручками регулировки резисторов R1 и R2 выставляется порог (температура) срабатывания электронной логики. Конденсатором С1 устраняется «дребезг» (самовозбуждение) микросхемы DD1 в момент переключения. Благодаря резисторам R5 и R6 выход «цепочки» логических элементов гальванически увязывается с транзисторным ключом УТ1 (КТ972), нагрузкой которого является реле К1. Оно, в свою очередь, запускает магнитный пускатель К2 типа ПМЕ-074, включающий нагрузку — бытовой нагреватель со встроенным вентилятором общей мощностью 1,5 кВт и более.

Правда, для подключения терморегулятора к бытовой сети необходим понижающий трансформатор. Как подсказывает опыт, приемлем любой малогабаритный «силовичок» (например, от переносного магнитофона, калькулятора). Можно использовать и недорогой сетевой адаптер мощностью 9—10 Вт. Главное, подать на диодный мост терморегулятора требуемые 12 В. Меньшее напряжение может вызвать нестабильность срабатывания реле К1, а большее грозит перегревом, а то и перегоранием его обмоток.

Электронная часть устройства, за исключением датчика, смонтирована на печатной плате из односторонне фольгированного стеклотекстолита размерами 70x70x2 мм и вместе с магнитным пускателем К2 размещена в пластмассовом корпусе подходящих размеров. Терморезистор-датчик сделан выносным и для большей чувствительности прикреплен к небольшому алюминиевому радиатору.

 

Терморегулятор, собранный без ошибок и из заведомо исправных деталей, начинает работать сразу по включению в электросеть. Настройка же состоит в подборе сопротивления резистора 144, обеспечивающего правильный режим эксплуатации стабилитрона (сверяется по справочнику). Например, при использовании Д814Б в качестве VD1 номинал этого резистора ориентировочно определяется из расчета 100 Ом на каждый 1 В разницы между нестабили-зированным и стабилизированным напряжениями питания. То есть сопротивление 144 для конкретных условий, задаваемых принципиальной электрической схемой, должно составлять (12—9) х 100 Ом = 300 Ом.

Рекомендуется только что смонтированное, подключенное к источнику электроэнергии и еще не помещенное в корпус устройство «погонять» в течение часа-двух. Если выяснится, что напряжение стабилизации «гуляет» или стабилитрон сильно греется, то необходимо подобрать номинал R4.

Далее, с помощью резисторов R1 и R2 задать температуру, которая должна поддерживаться в погребе-овоще-хранилище. Для этого следует, установив их движки в среднее положение и поместив терморезистор в среду с требуемой температурой, при медленном вращении ручки «коррекция» найти такой угол поворота ротора R2, при котором происходит срабатывание реле К1. Затем, охлаждая или нагревая среду, где пребывает датчик, зафиксировать температуру срабатывания термореле при крайних положениях движка резистора Хорошо ручку этого «переменника» на лицевой панели устройства оснастить указателем, а рядом наклеить шкалу из ватмана.

Автор: В.Савельев, г. Радужный, Владимирская обл.



РАСПРОДАЖА на АЛИЭКСПРЕСС! БЕСПЛАТНАЯ ДОСТАВКА товара из Китая!

ПОДЕЛИТЕСЬ С ДРУЗЬЯМИ



П О П У Л Я Р Н О Е:

  • Простой FM-приемник своими руками
  • Простой FM-приемник на двух транзисторах и одной микросхеме.

    Что такое FM-приемник? Радиоприемник — это электронное устройство, которое принимает радиоволны и преобразует информацию, переносимую ими, в полезную для восприятия человеком. Приемник использует электронные фильтры, чтобы отделить нужный сигнал радиочастоты от всех других сигналов, улавливаемых антенной, электронный усилитель для увеличения мощности сигнала для дальнейшей обработки, и, наконец, восстанавливает нужной информации посредством демодуляции.

    Подробнее…

  • Откосы для окна своими руками
  • Как самому сделать откосы на окнах?

    Откосы — это те поверхности стен, которые располагаются справа и слева от окон. Откосы могут быть наружными (с внешней стороны окон) и внутренними (с внутренней стороны). В основном эстетический вид добавляют внутренние откосы.

    Откосы выполняются не только для красоты окна, но они и обязательный элемент звукоизоляции и теплоизоляции проемов. Если откосы выполнены правильно, то они позволяют придать окнам законченный вид и соответствующую красоту.

    Подробнее…

  • Светомузыкальные «БЕГУЩИЕ ОГНИ» на одной микросхеме
  • Светомузыкальное оформление, сопровождающее выступления инструментальных ансамблей, все чаще использует эффект «бегущих огней». Различия между подобными установками состоят в конструк­ции выходного оптического устройства и в количестве каналов пере­ключателя, а также в том способе, каким последовательность звуков преобразуется в последовательность световых вспышек. Скорее всего, именно в этом состоит причина того, что в последнее время в техни­ческой литературе все чаще появляются описания подобных устано­вок, а не цветомузыкальных устройств с традиционным разделением каналов по частоте звукового сигнала. При хорошем зрительном эффекте такие светомузыкальные установки оказываются проще по конструкции и легче поддаются настройке. Подробнее…


Популярность: 2 618 просм.

Универсальный термостат - Домашний помощник


generic_thermostat Климатическая платформа - это термостат, реализованный в Home Assistant. В нем используется датчик и переключатель, подключенный к обогревателю или кондиционеру под капотом. В режиме нагревателя, если измеренная температура ниже заданной, нагреватель будет включаться и выключаться при достижении требуемой температуры. В режиме кондиционирования воздуха, если измеренная температура выше заданной, кондиционер будет включаться и выключаться при достижении требуемой температуры.Один универсальный термостат может управлять только одним переключателем. Если вам нужно активировать два переключателя, один для обогревателя и один для кондиционера, вам понадобятся два общих термостата.

  # Пример записи configuration.yaml климат: - платформа: generic_thermostat имя: Исследование обогреватель: switch.study_heater target_sensor: sensor.study_temperature  

Переменные конфигурации

namestring Требуется, по умолчанию: Стандартный термостат

entity_id для переключателя нагревателя, должно быть переключателем.Становится переключателем кондиционирования воздуха, когда ac_mode установлен на true .

target_sensorstring Обязательно

entity_id для датчика температуры target_sensor.state должен быть температурой.

min_tempfloat (необязательно, по умолчанию: 7)

Установите минимальную доступную уставку.

max_tempfloat (необязательно, по умолчанию: 35)

Установите максимально возможное установленное значение.

target_tempfloat (необязательно)

Установите начальную заданную температуру. Невозможность установки этой переменной приведет к установке нулевой целевой температуры при запуске.Начиная с версии 0.59, он будет сохранять заданную заданную температуру перед перезапуском, если она доступна.

ac_modeboolean (Необязательно, по умолчанию: false)

Установите переключатель, указанный в опции нагреватель , чтобы он считался охлаждающим устройством, а не нагревательным устройством.

min_cycle_durationtime | целое число (необязательно)

Установите минимальное время, в течение которого переключатель, указанный в опции нагревателя , должен находиться в текущем состоянии, прежде чем он будет выключен или включен.

cold_tolerancefloat (Необязательно, по умолчанию: 0.3)

Установите минимальную разницу между температурой, считываемой датчиком, указанным в опции target_sensor , и целевой температурой, которая должна измениться перед включением. Например, если целевая температура составляет 25, а допуск - 0,5, нагреватель запускается, когда датчик равен или опускается ниже 24,5.

hot_tolerancefloat (необязательно, по умолчанию: 0,3)

Установите минимальную разницу между температурой, считываемой датчиком, указанным в опции target_sensor , и целевой температурой, которая должна измениться перед выключением.Например, если целевая температура составляет 25, а допуск - 0,5, нагреватель остановится, когда датчик станет равным или превысит 25,5.

keep_alivetime | целое число (необязательно)

Установить интервал проверки активности. Если установлено, переключатель, указанный в опции нагреватель , будет срабатывать каждый раз по истечении интервала. Используется с нагревателями и кондиционерами, которые отключаются, если какое-то время не получают сигнал от пульта дистанционного управления. Также используйте с переключателями, которые могут потерять состояние. Вызов проверки активности выполняется с текущим допустимым состоянием интеграции климата (включен или выключен).

initial_hvac_modestring (необязательно)

Установите начальный режим HVAC. Допустимые значения: off , heat или cool . Значение должно быть заключено в двойные кавычки. Если этот параметр не установлен, предпочтительнее установить значение keep_alive . Это полезно для согласования любых расхождений между состоянием generic_thermostat и нагревателя .

Установите температуру, используемую preset_mode: away . Если это не указано, функция предустановленного режима будет недоступна.

Желаемая точность для этого устройства. Может использоваться для соответствия точности вашего термостата. Поддерживаемые значения: 0,1 , 0,5 и 1,0 .

По умолчанию:

0,5 для Цельсия и 1,0 для Фаренгейта.

Время для min_cycle_duration и keep_alive должно быть установлено как «чч: мм: сс» или должно содержать хотя бы одну из следующих записей: дней: , часов: , минут: , секунд : или миллисекунды: .В качестве альтернативы это может быть целое число, представляющее время в секундах.

В настоящее время климатическая платформа generic_thermostat поддерживает режимы HVAC «нагрев», «охлаждение» и «выключено». Вы можете заставить свой generic_thermostat избежать запуска, установив для режима HVAC значение «off».

Обратите внимание, что при изменении предустановленного режима на «прочь» вы также принудительно измените целевую температуру, которая будет восстановлена ​​после того, как предустановленный режим снова будет установлен на «Нет».

Пример полной конфигурации

  климат: - платформа: generic_thermostat имя: Исследование обогреватель: выключатель.study_heater target_sensor: sensor.study_temperature min_temp: 15 max_temp: 21 ac_mode: ложь target_temp: 17 cold_tolerance: 0,3 hot_tolerance: 0 min_cycle_duration: секунд: 5 keep_alive: минут: 3 initial_hvac_mode: "выключено" away_temp: 16 точность: 0,1  
.

flopon / home-assistant-smart-thermostat: Умный (PID) термостат для Home Assistant

перейти к содержанию Зарегистрироваться
  • Почему именно GitHub? Особенности →
    • Обзор кода
    • Управление проектами
    • Интеграции
    • Действия
    • Пакеты
    • Безопасность
    • Управление командой
    • Хостинг
    • мобильный
    • Истории клиентов →
    • Безопасность →
  • Команда
  • Предприятие
  • Проводить исследования
    • Изучить GitHub →
    Учитесь и вносите свой вклад
    • Темы
    • Коллекции
.

GitHub - Candrian / Термостат

перейти к содержанию Зарегистрироваться