Вход на сайт

Зарегистрировавшись на сайте Вы сможете добавлять свои материалы






Самодельный стабилизатор тока для светодиодов


Стабилизатор тока светодиода, схемы

См. также:  Электронный балласт для светодиодной лампы. Схемотехника.

Статья-ликбез по стабилизаторам тока светодиодов и не только. Рассматриваются схемы линейных и импульсных стабилизаторов тока.

Стабилизатор тока для светодиода устанавливается во многие конструкции светильников. Светодиоды, как и все диоды имеют нелинейную вольт-амперную характеристику. Это означает, что при изменении напряжения на светодиоде, ток изменяется непропорционально. По мере увеличения напряжения, сначала ток растёт очень медленно, светодиод при этом не светится. Затем, при достижении порогового напряжения, светодиод начинает светиться и ток возрастает очень быстро. При дальнейшем увеличении напряжения, ток возрастает катастрофически и светодиод сгорает.

Пороговое напряжение указывается в характеристиках светодиодов, как прямое напряжение при номинальном токе. Номинальный ток для большинства маломощных светодиодов - 20 мА. Для мощных светодиодов освещения, номинальный ток может быть больше - 350 мА или более. Кстати, мощные светодиоды выделяют тепло и должны быть установлены на теплоотвод.

Для правильной работы светодиода, его надо питать через стабилизатор тока. Зачем? Дело в том, что пороговое напряжение светодиода имеет разброс. Разные типы светодиодов имеют разное прямое напряжение, даже однотипные светодиоды имеют разное прямое напряжение - это указано в характеристиках светодиода как минимальное и максимальное значения. Следовательно, два светодиода, подключенные к одному источнику напряжения по параллельной схеме будут пропускать разный ток. Этот ток может быть настолько разным, что светодиод может раньше выйти из строя или сгореть сразу. Кроме того, стабилизатор напряжения также имеет дрейф параметров (от уровня первичного питания, от нагрузки, от температуры, просто по времени). Следовательно, включать светодиоды без устройств выравнивания тока - нежелательно. Различные способы выравнивания тока рассмотрены отдельно. В этой статье рассматриваются устройства, устанавливающие вполне определённый, заданный ток - стабилизаторы тока.

Типы стабилизаторов тока

Стабилизатор тока устанавливает заданный ток через светодиод вне зависимости от приложенного к схеме напряжения. При увеличении напряжения на схеме выше порогового уровня, ток достигает установленного значения и далее не изменяется. При дальнейшем увеличении общего напряжения, напряжение на светодиоде перестаёт меняться, а напряжение на стабилизаторе тока растёт.

Поскольку напряжение на светодиоде определяется его параметрами и в общем случае неизменно, то стабилизатор тока можно назвать также стабилизатором мощности светодиода. В простейшем случае, выделяемая устройством активная мощность (тепло) распределяется между светодиодом и стабилизатором пропорционально напряжению на них. Такой стабилизатор называется линейным. Также существуют более экономичные устройства - стабилизаторы тока на базе импульсного преобразователя (ключевого преобразователя или конвертера). Они называются импульсными, поскольку внутри себя прокачивают мощность порциями - импульсами по мере необходимости для потребителя. Правильный импульсный преобразователь потребляет мощность непрерывно, внутри себя передаёт её импульсами от входной цепи к выходной и выдаёт мощность в нагрузку уже опять непрерывно.

Линейный стабилизатор тока

Линейный стабилизатор тока греется тем больше, чем больше приложено к нему напряжение. Это его основной недостаток. Однако, он имеет ряд преимуществ, например:

  • Линейный стабилизатор не создаёт электромагнитных помех
  • Прост по конструкции
  • Имеет низкую стоимость в большинстве применений

Поскольку импульсный преобразователь не бывает абсолютно эффективным, существуют приложения, когда линейный стабилизатор имеет сравнимую или даже большую эффективность - когда входное напряжение лишь немного превышает напряжение на светодиоде. Кстати, при питании от сети, часто используется трансформатор, на выходе которого устанавливается линейный стабилизатор тока. То есть, сначала напряжение снижается до уровня, сравнимого с напряжением на светодиоде, а затем, с помощью линейного стабилизатора устанавливается необходимый ток.

В другом случае, можно приблизить напряжение светодиода к напряжению питания - соединить светодиоды в последовательную цепочку. Напряжение на цепочке будет равняться сумме напряжений на каждом светодиоде.

Схемы линейных стабилизаторов тока

Самая простая схема стабилизатора тока - на одном транзисторе (схема "а"). Поскольку транзистор - это усилитель тока, то его выходной ток (ток коллектора) больше тока управления (ток базы) в h21 раз (коэффициент усиления). Ток базы можно установить с помощью батарейки и резистора, или с помощью стабилитрона и резистора (схема "б"). Однако такую схему трудно настраивать, полученный стабилизатор будет зависеть от температуры, кроме того, транзисторы имеют большой разброс параметров и при замене транзистора, ток придётся подбирать снова. Гораздо лучше работает схема с обратной связью "в" и "г". Резистор R в схеме выполняет роль обратной связи - при увеличении тока, напряжение на резисторе возрастает, тем самым запирает транзистор и ток снижается. Схема "г", при использовании однотипных транзисторов, имеет бóльшую температурную стабильность и возможность максимально уменьшить номинал резистора, что снижает минимальное напряжение стабилизатора и выделение мощности на резисторе R.

Стабилизатор тока можно выполнить на базе полевого транзистора с p-n переходом (схема "д"). Напряжение затвор-исток устанавливает ток стока. При нулевом напряжении затвор-исток, ток через транзистор равен начальному току стока, указанному в документации. Минимальное напряжение работы такого стабилизатора тока зависит от транзистора и достигает 3 вольт. Некоторые производители электронных компонентов выпускают специальные устройства - готовые стабилизаторы с фиксированным током, собранные по такой схеме - CRD (Current Regulating Devices) или CCR (Constant Current Regulator) . Некоторые называют его диодным стабилизатором, поскольку в обратном включении он работает как диод.

Компания On Semiconductor выпускает линейный стабилизатор серии NSIxxx, например NSIC2020B, который имеет два вывода и для увеличения надежности, имеет отрицательный температурный коэффициент - при увеличении температуры, ток через светодиоды снижается.

Импульсный стабилизатор тока

Стабилизатор тока на базе импульсного преобразователя по конструкции очень похож на стабилизатор напряжения на базе импульсного преобразователя, но контролирует не напряжение на нагрузке, а ток через нагрузку. При снижении тока в нагрузке, он подкачивает мощность, при увеличении - снижает. Наиболее распространённые схемы импульсных преобразователей имеют в своём составе реактивный элемент - дроссель, который с помощью коммутатора (ключа) подкачивается порциями энергии от входной цепи (от входной ёмкости) и в свою очередь передаёт её нагрузке. Кроме очевидного преимущества экономии энергии, импульсные преобразователи обладают рядом недостатков, с которыми приходится бороться различными схемотехническими и конструктивными решениями:

  • Импульсный конвертер производит электрические и электромагнитные помехи
  • Имеет как правило сложную конструкцию
  • Не обладает абсолютной эффективностью, то есть тратит энергию для собственной работы и греется
  • Имеет чаще всего бóльшую стоимость, по сравнению, например, с трансформаторными плюс линейными устройствами

Поскольку экономия энергии во многих приложениях является решающей, разработчики компонентов, схемотехники стараются снизить влияние этих недостатков, и, зачастую, преуспевают в этом.

Схемы импульсных преобразователей

Поскольку стабилизатор тока основан на импульсном преобразователе, рассмотрим основные схемы импульсных преобразователей. Каждый импульсный преобразователь имеет ключ, элемент, который может находиться только в двух состояниях - включенном и выключенном. В выключенном состоянии, ключ не проводит ток и, соответственно, на нём не выделяется мощность. Во включенном состоянии, ключ проводит ток, но имеет очень малое сопротивление (в идеале - равное нулю), соответственно на нём выделяется мощность, близкая к нулю. Таким образом, ключ может передавать порции энергии от входной цепи к выходной практически без потерь мощности. Однако, вместо стабильного тока, какой можно получить от линейного источника питания, на выходе такого ключа будет импульсное напряжение и ток. Для того, чтобы получить снова стабильные напряжение и ток, можно поставить фильтр.

С помощью обычного RC фильтра можно получить результат, однако, эффективность такого преобразователя не будет лучше линейного, поскольку вся избыточная мощность выделится на активном сопротивлении резистора. Но если использовать вместо RC - LC фильтр (схема "б"), то, благодаря "специфическим" свойствам индуктивности, потерь мощности можно избежать. Индуктивность обладает полезным реактивным свойством - ток через неё возрастает постепенно, подаваемая на него электрическая энергия преобразуется в магнитную и накапливается в сердечнике. После выключения ключа, ток в индуктивности не пропадает, напряжение на индуктивности меняет полярность и продолжает заряжать выходной конденсатор, индуктивность становится источником тока через обводной диод D. Такая индуктивность, предназначенная для передачи мощности, называется дросселем. Ток в дросселе правильно работающего устройства присутствует постоянно - так называемый неразрывный режим или режим непрерывного тока (в западной литературе такой режим называется Constant Current Mode - CCM). При снижении тока нагрузки, напряжение на таком преобразователе возрастает, энергия, накапливаемая в дросселе снижается и устройство может перейти в разрывный режим работы, когда ток в дросселе становится прерывистым. При таком режиме работы резко повышается уровень помех, создаваемых устройством. Некоторые преобразователи работают в пограничном режиме, когда ток через дроссель приближается к нулю (в западной литературе такой режим называется Border Current Mode - BCM). В любом случае, через дроссель течет значительный постоянный ток, что приводит к намагничиванию сердечника, в связи с чем, дроссель выполняется особой конструкции - с разрывом или с использованием специальных магнитных материалов.

Стабилизатор на базе импульсного преобразователя имеет устройство, регулирующее работу ключа, в зависимости от нагрузки. Стабилизатор напряжения регистрирует напряжение на нагрузке и изменяет работу ключа (схема "а"). Стабилизатор тока измеряет ток через нагрузку, например с помощью маленького измерительного сопротивления Ri (схема "б"), включенного последовательно с нагрузкой.

Ключ преобразователя, в зависимости от сигнала регулятора, включается с различной скважностью. Есть два распространённых способа управления ключом - широтно-импульсная модуляция (ШИМ) и токовый режим. В режиме ШИМ, сигнал ошибки управляет длительностью импульсов при сохранении частоты следования. В токовом режиме, измеряется пиковый ток в дросселе и изменяется интервал между импульсами.

В современных ключевых преобразователях в качестве ключа обычно используется MOSFET транзистор.

Понижающий преобразователь

Рассмотренный выше вариант преобразователя называется понижающим, поскольку напряжение на нагрузке всегда ниже напряжения источника питания.

Поскольку в дросселе постоянно течёт однонаправленный ток, требования к выходному конденсатору могут быть снижены, дроссель с выходным конденсатором играют роль эффективного LC фильтра. В некоторых схемах стабилизаторов тока, например для светодиодов, выходной конденсатор может отсутствовать вообще. В западной литературе понижающий преобразователь называется Buck converter.

Повышающий преобразователь

Схема импульсного стабилизатора, приведённая ниже, также работает на основе дросселя, однако дроссель всегда подключен к выходу источника питания. Когда ключ разомкнут, питание поступает через дроссель и диод на нагрузку. Когда ключ замыкается, дроссель накапливает энергию, когда ключ размыкается, возникающее на его выводах ЭДС добавляется к ЭДС источника питания и напряжение на нагрузке возрастает.

В отличие от предыдущей схемы, выходной конденсатор заряжается прерывистым током, следовательно выходной конденсатор должен быть большим, и, возможно, понадобится дополнительный фильтр. В западной литературе повышающе-понижающий преобразователь называется Boost converter.

Инвертирующий преобразователь

Еще одна схема импульсного преобразователя работает аналогично - когда ключ замыкается, дроссель накапливает энергию, когда ключ размыкается, возникающее на его выводах ЭДС будет иметь обратный знак и на нагрузке появится отрицательное напряжение.

Как и в предыдущей схеме, выходной конденсатор заряжается прерывистым током, следовательно выходной конденсатор должен быть большим, и, возможно, понадобится дополнительный фильтр. В западной литературе инвертирующий преобразователь называется Buck-Boost converter.

Прямоходовой и обратноходовой преобразователи

Наиболее часто блоки питания изготавливаются по схеме, использующей в своем составе трансформатор. Трансформатор обеспечивает гальваническую развязку вторичной цепи от источника питания, кроме того, эффективность блока питания на основе таких схем может достигать 98% и более. Прямоходовой преобразователь (схема "а") передаёт энергию от источника в нагрузку в момент включенного состояния ключа. Фактически - это модифицированный понижающий преобразователь. Обратноходовой преобразователь (схема "б") передаёт энергию от источника в нагрузку во время выключенного состояния.

В прямоходовом преобразователе трансформатор работает в обычном режиме и энергия накапливается в дросселе. Фактически - это генератор импульсов с LC фильтром на выходе. Обратноходовой преобразователь накапливает энергию в трансформаторе. То есть трансформатор совмещает свойства трансформатора и дросселя, что создаёт определённые сложности при выборе его конструкции.

В западной литературе прямоходовой преобразователь называется Forward converter. Обратноходовой - Flyback converter.

Применение импульсного конвертера в качестве стабилизатора тока

Большинство импульсных блоков питания выпускаются с стабилизацией выходного напряжения. Типичные схемы таких блоков питания, особенно мощных, кроме обратной связи по выходному напряжению, имеют схему контроля тока ключевого элемента, например резистор с малым сопротивлением. Такой контроль позволяет обеспечивать режим работы дросселя. Простейшие стабилизаторы тока используют этот элемент контроля для стабилизации выходного тока. Таким образом, стабилизатор тока оказывается даже проще стабилизатора напряжения.

Рассмотрим схему импульсного стабилизатора тока для светодиода на базе микросхемы NCL30100 от известного производителя электронных компонентов On Semiconductor:

Схема понижающего преобразователя работает в режиме неразрывного тока с внешним ключом. Схема выбрана из множества других, поскольку она показывает, насколько простой и эффективной может быть схема импульсного стабилизатора тока с внешним ключом. В приведённой схеме, управляющая микросхема IC1 управляет работой MOSFET ключа Q1. Поскольку преобразователь работает в режиме неразрывного тока, выходной конденсатор ставить необязательно. В многих схемах датчик тока устанавливается в цепи истока ключа, однако, это снижает скорость включения транзистора. В приведённой схеме датчик тока R4 установлен в цепи первичного питания, в результате схема получилась простой и эффективной. Ключ работает на частоте 700 кГц, что позволяет установить компактный дроссель. При выходной мощности 7 Ватт, входном напряжении 12 Вольт при работе на 700 мА (3 светодиода), эффективность устройства более 95%. Схема стабильно работает до 15 Ватт выходной мощности без применения дополнительных мер по отводу тепла.

Ещё более простая схема получается с использованием микросхем ключевых стабилизаторов с встроенным ключом. Например, схема ключевого стабилизатора тока светодиода на базе микросхемы CAV4201/CAT4201:

Для работы устройства мощностью до 7 Ватт необходимо всего 8 компонентов, включая саму микросхему. Импульсный стабилизатор работает в пограничном режиме тока и для его работы требуется небольшой выходной керамический конденсатор. Резистор R3 необходим при питании от 24 Вольт и выше для снижения скорости нарастания входного напряжения, хотя это несколько снижает эффективность устройства. Частота работы превышает 200 кГц и меняется в зависимости от нагрузки и входного напряжения. Это обусловлено методом регулирования - контролем пикового тока дросселя. Когда ток достигает максимального значения, ключ размыкается, когда ток снижается до нуля - включается. Эффективность устройства достигает 94%.

Назад к каталогу статей >>>

Как рассчитать номинал резистора для светодиодного освещения

Следуя этим шагам, мы получим значение резистора для светодиодов с питанием от 12 В постоянного тока:

  1. Определите напряжение и ток, необходимые для вашего светодиода.
  2. Мы будем использовать следующую формулу для определения номинала резистора: Резистор = (напряжение батареи - напряжение светодиода) / желаемый ток светодиода.
  3. Для типичного белого светодиода, который требует 10 мА при питании от 12 В, значения следующие: (12–3,4) /. 010 = 860 Ом.
  4. Чтобы использовать несколько светодиодов параллельно, просуммируйте текущие значения.Из приведенного выше примера, если мы используем 5 белых светодиодов, потребляемый ток составляет 10 мА x 5 = 50 мА. Итак (12-3,4) /. 050 = 172 Ом.

Светодиоды становятся все более популярными для различных проектов и нужд освещения. Это связано с превосходной энергоэффективностью и увеличенным сроком службы светодиодов по сравнению с лампами накаливания. Кроме того, по мере совершенствования технологии и увеличения производства стоимость продолжает снижаться.

LED - это аббревиатура от Light Emitting Diode. Это означает, что светодиод имеет определенную полярность, которая должна быть применена, чтобы он излучал свет.Несоблюдение этого требования полярности приведет к тому, что светодиод не загорится и может вызвать катастрофическое повреждение светодиода. Это связано с тем, что светодиод имеет относительно низкое допустимое значение напряжения обратной полярности (обычно около 5 вольт). Поскольку светодиод по сути является диодом, он имеет максимальное значение тока, которое нельзя превышать в течение любого периода времени.

Имея это в виду, мы рассмотрим требования к ограничивающему резистору, который должен использоваться в цепи светодиода. Поскольку светодиоды доступны в различных цветах, требуемое значение сопротивления будет варьироваться в зависимости от цвета светодиода.Это связано с тем, что цвет светодиода определяется материалами, из которых он изготовлен, и эти различные материалы имеют разные характеристики напряжения. Значение прямого напряжения - это напряжение, необходимое для включения светодиода. Обычные красные, зеленые, оранжевые и желтые светодиоды имеют прямое напряжение приблизительно 2,0 вольт; но белый и синий светодиоды имеют значение прямого напряжения 3,4 В. Из-за этого изменения значение сопротивления резистора будет варьироваться в зависимости от цвета светодиода. Процедура состоит в том, чтобы выбрать номинал резистора, который будет обеспечивать правильное количество тока, протекающего через светодиод, на основе этого значения прямого напряжения и значения источника питания, питающего цепь.

Поскольку автомобильные приложения - одно из самых популярных применений светодиодов, я приведу пример проекта светодиодного освещения, в котором в качестве источника питания используется 12 вольт. Требуемая формула - это закон Ома, согласно которому сопротивление равно напряжению, деленному на ток. Здесь важно отметить, что значение напряжения, используемое в расчетах, представляет собой разницу между напряжением источника питания (аккумулятора) и значением прямого напряжения светодиода. Это потому, что мы хотим, чтобы резистор «понижал» напряжение от источника питания до значения прямого напряжения светодиода.Таким образом, формула становится

Резистор = (напряжение батареи - напряжение светодиода) / желаемый ток светодиода. Предположим, источник питания 12 В и белый светодиод с желаемым током 10 мА; Формула принимает вид Резистор = (12–3,4) /. 010, что составляет 860 Ом. Поскольку это нестандартное значение, я бы использовал резистор на 820 Ом. Нам также необходимо определить номинальную мощность (ватт) необходимого резистора. Это вычисляется путем умножения значения напряжения, падающего на резистор, на значение тока, протекающего в нем.Для нашего примера, приведенного выше, (12–3,4) X 0,010 = 0,086, поэтому мы можем безопасно использовать в этом приложении резистор Вт, поскольку мы должны использовать следующий по величине стандартный номинальный ток.

Если требуется более одного светодиода, несколько светодиодов (одного цвета) могут быть подключены параллельно. Это сохранит то же требование напряжения, но значение тока будет увеличиваться прямо пропорционально количеству светодиодов. Также может увеличиться номинальная мощность резистора. В качестве примера мы возьмем тот же белый светодиод, но мы подключим 5 светодиодов параллельно.Следовательно, требуемое значение тока будет 10 мА, умноженным на 5 (0,010 X 5 = 0,050). Используя это в нашей формуле; (12-3,4) /. 050 = 172 Ом. Используйте стандартное значение 180 Ом. Номинальная мощность теперь будет выше (12–3,4) X 0,050 = 0,43, поэтому в этом случае нам нужно использовать резистор не менее ½ Вт.

Эти два примера будут повторяться для красных светодиодов. Для одного красного светодиода: (12–2.0) /. 010 = 1000 Ом, что составляет 1 кОм, а номинальная мощность составляет (12–2.0) X (.010) = .100, поэтому ¼ Вт достаточно. Для 5 красных светодиодов, включенных параллельно: (12-2.0) /. 05 = 200 Ом, что является стандартным значением, а номинальная мощность составляет (12-2,0) X 0,050 = 0,5, поэтому я бы использовал резистор 1 Вт, чтобы дать нам некоторый допуск для компенсации колебаний напряжения источника питания и т. Д.

Как мы видим, определение номинала резистора для освещения светодиодов простое и понятное, но мы должны учитывать цвет светодиода, а также номинальную мощность требуемого резистора и количество светодиодов в цепи.

.

Самодельный стабилизатор камеры | Hackaday

У нас было довольно много подвесов и устойчивых камер, но этот выделяется. Во-первых, [Дэниел Рю] был на втором курсе, когда построил его. В его 2-осевом подвесе камеры используются бесщеточные двигатели постоянного тока, и он сделан из углеродного волокна.

[Даниэль] обработал детали из углеродного волокна на настольном станке с ЧПУ и некоторых ручных инструментах. И ему также пришлось научиться создавать его в Solid Works. В своем блестящем руководстве «Сделай сам» он начинает с перечисления деталей и источников их происхождения, а также необходимых инструментов.Большинство подвесов используют сервоприводы для движения оси, что ограничивает диапазон и не обеспечивает очень плавное движение. Бесщеточные двигатели преодолевают эти ограничения, позволяя создать красивый плавно движущийся подвес с широким диапазоном движений. Когда [Алексей Москаленко] представил контроллер бесщеточного двигателя AlexMos, [Даниэль] заказал его, а затем подождал, пока он не сможет достать нужный тип двигателей. Файлы CAD для всех обработанных деталей доступны для загрузки (файл .zip).

Затем он продолжает вести блог о своем прогрессе в строительстве с большим количеством фотографий, описывающих обработку и сборку.Попутно он сделал несколько хороших дизайнерских решений - например, использовал нажимные гайки, чтобы упростить сборку и разборку, и демонтировал один из двигателей и заменил его вал на нестандартный, более длинный вместо использования муфты для его удлинения. . В конце концов, в результате получилась не только красивая и легкая установка, но и очень хорошо работающая благодаря моторам и контроллеру, которые он использовал. Посмотрите видео ниже, чтобы увидеть его в действии.

.

Руководство по пайке светодиодов - LEDSupply BLOG

Пайка: вот что работает!
Бороться с пайкой и повреждением светодиода (ов) и печатной платы (PCB) или печатной платы с металлическим сердечником (MCPCB) легко обойтись без соответствующих инструментов, материалов и техники пайки. Чтобы избежать распространенных проблем при пайке светодиодов, мы оглянулись на наш 20-летний опыт работы в области электроники и изложили здесь все «что можно и чего нельзя» при пайке светодиодов. Наше намерение - помочь вам сэкономить время, деньги и избежать разочарований, поэтому, возможно, вы попробуете второй светодиодный проект вместе с нами! Кроме того, в конце есть видео, в котором показан процесс в действии.

Начнем с простого…

MCPCB Светодиодная звезда

Припой - это проводящий материал, который плавится около 400 градусов по Фаренгейту и позволяет двум металлическим частям соединяться в цепь. Стандартное соединение «точка-точка» - это два вывода, скажем, катод светодиода и анод второго светодиода, скрученные и спаянные вместе; это более эффективно, чем просто скручивать вместе провода. Другой распространенный тип паяного соединения встречается на печатных платах и ​​MCPCB, где на плате есть токопроводящие дорожки, ведущие к компонентам, на которых выполняется паяное соединение.Большая часть пайки, с которой мы сталкиваемся, связана со светодиодами на MCPCB, которые вы можете видеть справа, и мы показываем пример на видео ниже.

Вот важный лакомый кусочек для запоминания…

Припой обычно состоит на 60 процентов из олова и на 40 процентов из свинца с флюсовым сердечником из канифоли (центр припоя). Следует упомянуть канифольный стержень, потому что он удаляет загрязнения с контактов и улучшает электрическое соединение; в основном, это помогает припою прилипать к контактной площадке. Поскольку заставить припой течь и прилипать к поверхности иногда трудно, знание того, что флюс находится в центре припоя, означает, что вы можете помочь избежать этой проблемы, целенаправленно расплавив центр припоя непосредственно на поверхность.Это сначала приводит к попаданию канифольного флюса на поверхность и помогает припою прилипать к поверхности.

Наличие и поддержка правильных инструментов для торговли

Припой толщиной 0,20 мм

Припой: Мы предпочитаем припой с содержанием олова 60/40 вместо свинца и толщиной 0,20 мм. Такая толщина припоя идеально подходит почти для всех наших применений, и мы рекомендуем именно это. Подробная информация о припое, который мы используем, здесь.

Обычный паяльник

Утюг: Наличие качественного паяльника и наконечников разного размера делает любую работу проще и быстрее.Многие проблемы, с которыми мы сталкиваемся со стороны клиентов, связаны с дешевым утюгом и маленькими чаевыми. Если утюг недостаточно мощный или наконечник слишком маленький, температура поверхности никогда не станет достаточно высокой для равномерного стекания припоя. Мы рекомендуем по крайней мере 30-ваттный утюг, к сожалению, это может быть дорого, и если вы не планируете много паять, эти расходы могут быть трудно оправданными. Есть недорогие паяльники, которые подойдут для небольших работ, но если вам нужно много паять и вы хотите минимизировать хлопоты и увеличить срок службы, сделайте себе одолжение и купите хороший утюг.Для наших собственных светодиодных проектов и светодиодных комплектов, которые мы создаем для клиентов, мы используем такой утюг.

Жала паяльника

Паяльное жало: Поскольку не все поверхности паяльных площадок имеют одинаковый размер, часто паяльники поставляются со сменными размерами жала; у некоторых есть тонкие концы, а у других - более широкие клинья. Соответствие размера наконечника размеру поверхности может значительно облегчить нагрев паяльной площадки. Если припой не растекается по контактной площадке, возможно, это связано с тем, что наконечник утюга слишком мал и не распределяет тепло по достаточно широкой площади.

Еще один лакомый кусочек…

Если ваши мощные светодиоды устанавливаются на радиатор (что они часто делают), имеет смысл выполнить пайку перед закреплением светодиода на радиаторе. При попытке припаять светодиод, который уже находится на радиаторе, радиатор иногда может поглощать все тепло от утюга и делать нагрев поверхности паяльной площадки практически невозможным.

Паяльное жало

Tin the Tip: Пытаться паять без луженого наконечника бесполезно.Чтобы правильно залудить кончик утюга, нанесите на него припой и нанесите толстый слой покрытия. Следующий шаг - стереть излишки припоя влажной губкой и, наконец, снова нанести небольшое количество припоя на наконечник.

Очистка паяльной поверхности

Чистая поверхность припоя: Очевидно, что чем более чистая поверхность, тем лучше. В идеале убедитесь, что на поверхности нет грязи, пыли, эпоксидной смолы или чего-либо еще.

Лужение паяльной площадки

Лужить поверхности (провода, паяльная площадка или печатная плата): В нашем видео мы показываем пример пайки проводов к светодиодной звезде Cree, но перед окончательным подключением выводы проводов сначала покрываются оловом.Подобно лужению утюга, на провода наносится тонкий слой припоя; Важно, чтобы припой прилипал к проводу. Помните высказанное выше предположение о том, что канифоль находится в середине припоя; использование середины припоя помогает ему лучше прилипать к проводу. Кроме того, в примере из нашего видео поверхность паяльной площадки также покрывается лужением. Примените луженый наконечник к контактной площадке и начните наносить припой на контактную площадку. Припой должен равномерно растекаться по всей контактной площадке, и как только он действительно удалит железо, пусть припой затвердеет.

Final Connection: На этом вся тяжелая работа сделана. С красиво луженым наконечником и поверхностью просто прикоснитесь к двум припаяемым деталям утюгом. Припой на каждой поверхности должен течь; быстро удалите утюг, и когда припой затвердеет, оба компонента следует спаять вместе.

Может быть сложно паять?

Светодиод испорченный от пайки

Да. Сначала не расстраивайтесь, если вы испортите один или два компонента - мы все это сделали! Помните, что утюги горячие, а светодиоды не любят слишком много тепла.Будьте осторожны с настройками температуры на утюге и с тем, как долго вы прикладываете утюг к поверхности. В большинстве случаев для того, чтобы припой растекся и прилип к поверхности, не требуется больше нескольких секунд. Если это займет больше времени, остановитесь, дважды проверьте этот пост и посмотрите видео еще раз.

Помощь Добавить советы?

Если у вас есть вопросы или предложения, пожалуйста, оставьте комментарий, и мы сможем добавить их в сообщение!

Пайка светодиодов в видео!

.

2018 Стабилизатор электрического тока - Купить стабилизатор 500 ВА, стабилизатор для бурения, стабилизатор для пластикового гравия на Alibaba.com

Q 1. Какие условия оплаты?

A. Мы принимаем T / T, 30% депозита и 70% баланса перед отгрузкой.

Q 2. Какой порт загрузки?

A. Обычно для доставки мы предпочитаем порт сяолань (чжуншань).

Q 3. Как время доставки? (Стабилизатор напряжения 4 кВт)

A. Обычно на изготовление уходит около 25-30 дней.

Q 4. Мы хотим знать о производственных мощностях.

A. Наша средняя мощность составляет 10000 шт. В месяц.

Q 5. Могу ли я узнать стандарт упаковки?

A. Обычно мы используем картонную коробку для небольших устройств и прочный деревянный ящик для больших напольных устройств. Каждый блок хорошо защищен цветной коробкой.

Q 6. Из какого материала трансформатор?

A. У нас есть два типа: 100% медь и медь с алюминием. Это зависит от ваших требований.На самом деле, эти двое не имеют разницы, если нормально работают.

Q 7. Согласны ли вы использовать наш логотип?

A. Если у вас хорошее количество, это не проблема сделать OEM.

Q 8. Каков ваш рынок?

A. Наша продукция пользуется популярностью при экспорте в Африку, Южную Азию, Ближний Восток, Европу и так далее. Большинство из них - наши постоянные клиенты, а некоторые находятся в стадии разработки. Конечно, мы надеемся, что вы присоединитесь к нам и получите взаимную выгоду от нашего сотрудничества.

Q 9. Какой у вас сертификат?

А.У нас есть CE, SONCAP и отчет о тестировании для всех наших продуктов.

Q 10. Не могли бы вы предложить форму A или C / O?

A. Абсолютно не проблема. Мы можем подготовить соответствующие документы в офис иностранных дел или другой офис для подачи заявки на сертификат.

.

Смотрите также