Вход на сайт

Зарегистрировавшись на сайте Вы сможете добавлять свои материалы






Самодельный схема термометр


принцип работы цифрового устройства, простые схемы

На замену не совсем удобным аналоговым измерителям температуры, в основе работы которых лежит свойство жидкости расширяться и сжиматься, промышленность предложила дискретные устройства. Эти совсем несложные приборы обладают рядом неоспоримых преимуществ. Купить измеритель можно практически в любом магазине бытовой или климатической техники, но гораздо интереснее изготовить электронный термометр с выносным датчиком своими руками.

Суть устройства

Термометр, разговорный аналог — градусник, предназначен для измерения температуры окружающей среды. Первое устройство было изобретено в 1714 году немецким физиком Д. Г. Фаренгейтом. В основе своей конструкции он использовал прозрачную запаянную колбу, внутри которой находился спирт. После в качестве жидкости учёный применил ртуть. Но шкала аналогового измерителя, существующая и по сей день, была разработана лишь только через 30 лет шведским астрономом и метеорологом Андерс Цельсием. За начальные точки он предложил взять температуру тающего льда и кипения воды.

Интересным фактом является то, что изначально числом 100 была отмечена температура таяния льда, а за ноль взята точка кипения. Впоследствии шкалу «перевернули». По некоторым мнениям это сделал сам Цельсий, по другим — его соотечественники ботаник Линней и астроном Штремер.

Вскоре изготовление ртутных измерителей было широко налажено производством в промышленных масштабах. Со временем ртуть из-за своей ядовитости была заменена на спирт, а затем и вовсе был предложен новый тип устройства — цифровой. Сегодня, пожалуй, градусник стал неотъемлемым атрибутом любого жилища. По совету Всемирной организации здравоохранения была принята Минаматская конвенция, направленная на постепенный вывод из обихода ртутных градусников. Согласно ей в 2022 году использование ртути в измерителях будет полностью прекращено.

Поэтому из-за своих отличных характеристик термометр с цифровой схемой практически не имеет конкурентов. Предлагаемые в продаже спиртовые приборы проигрывают ему по точности и удобству восприятия данных.

Электронные модели могут располагаться в любом месте, ведь в контролируемом помещении необходимо расположить только небольшой датчик, подключённый к устройству. Этот тип используется во многих технологических процессах промышленности, например, строительных, аграрных, энергетических. С их помощью контролируется:

  • температура воздуха в производственных и жилых зданиях;
  • проверка нагрева сыпучих продуктов;
  • состояние вязких материалов.

Принцип работы

Перед тем как непосредственно приступить к изготовлению электронного термометра, следует разобраться в принципе его действия и определиться, из каких узлов будет состоять конструкция. Промышленно выпускаемые электронные градусники различаются по своим размерам и назначению. Но все они построены на однотипном принципе действия.

Проводимость материала изменяется в зависимости от температуры окружающей среды. Основываясь на этом и проектируется схема электронного градусника. Так, чаще всего в конструкции применяется термопара. Это электронный прибор, стоящий из двух сваренных между собой металлов. На поверхности каждого из них имеется контактная площадка, подключённая к измерительной схеме. При нагревании или охлаждении контактов возникает термоэлектродвижущая сила, появление и изменение которой регистрируется платой электроники.

В устройствах нового поколения вместо термочувствительного элемента используется кремниевый диод. Полупроводниковый радиоэлемент, у которого наблюдается зависимость вольт-амперной характеристики от температурного воздействия. Иными словами, при прямом включении (направление тока от анода к катоду) значение падения напряжения на переходе изменяется в зависимости от нагрева полупроводника.

Обработанные данные выводятся на дисплей, с которого уже визуально снимаются пользователем. Цифровые градусники позволяют измерять изменения температуры в диапазоне от -50 ° С до 100 ° С.

Всего же в конструкции простого термометра можно выделить пять блоков:

  1. Датчик — устройство, изменяющее свои параметры в зависимости от величины воздействующей на него температуры.
  2. Измерительные провода — используются для выноса датчика и его расположения в различных местах, требующих контроля над температурой. Чаще всего это небольшого сечения в диаметре проводники, даже необязательно экранированные.
  3. Плата электроники — содержит блок анализатора, фиксирующий изменения приходящего от датчика сигнала, а затем передающий его на экран.
  4. Дисплей — монохромный или цветной экран, предназначенный для отображения данных об измеренной температуре.
  5. Блок питания — собирается на типовых для радиоэлектроники интегральных микросхемах. Используется для стабилизации и преобразования питания, подающегося на все узлы платы.

Особенности изготовления

Человеку, увлекающемуся радиолюбительством, сделать электронный термометр своими руками по схеме не доставит трудностей, но в то же время обычному потребителю понадобится иметь хотя бы навыки паяния. Сегодня существует довольно много различных схем, отличающихся как сложностью повторения, так и дефицитностью радиодеталей.

При выборе схемы учитывают характеристики, которые она сможет обеспечить будущему измерительному устройству. В первую очередь — это диапазон измеряемых температур, а во вторую – погрешность. Конструктивно можно собрать проводную и беспроводную модель. При сборке второго типа используется радиомодуль, значительно удорожающий изделие.

Из-за использования чувствительных специализированных микросхем собирать навесным монтажом схему вряд ли получится. Поэтому предварительно изготавливается печатная плата. Делать её лучше из одностороннего фольгированного стеклотекстолита методом «лазерно-утюжной технологии».

Суть метода заключается в том, что с помощью, например, Sprint Layout, рисуется печатная схема устройства и распечатывается в зеркальном отображении в масштабе 1:1 на лазерном принтере. Затем, приложив отпечатанный рисунок изображением вниз к фольгированному слою, проглаживают чертёж разогретым утюгом. Из-за особенностей тонера изображение линий перенесётся на стеклотекстолит. Далее плата погружается в ванную с реактивом, например, FeCl3.

В качестве индикатора можно использовать светодиодную матрицу, но лучше приобрести любой монохромный экран. Простой экран можно взять буквально за «копейки», например, подойдёт от старых системных блоков, выполненных в форм-факторе АТ. Если планируется конструкция с выносным датчиком, то неплохим вариантом будет использование шлейфа с диаметром проводника от 0,3 мм2, но в принципе подойдёт любой провод. При этом чем вынос датчика больше, тем большего сечения нужен и провод.

В схемотехнике некоторых термометров используются микроконтроллеры. Их применение позволяет упростить электрическую схему и повысить функциональность, но при этом требует навыков программирования и умения загружать прошивку. Для этого понадобится программатор, который можно также спаять самостоятельно, например, для LPT из пяти проводов.

Простой термометр

Конструкция простого термометра состоит всего из трёх деталей и тестера. В качестве датчика температуры в схеме используется LM35. Это интегральный прибор с калиброванным выходом по напряжению. Амплитуда на выходе датчика пропорциональна температуре. Точность измерений составляет 0,75° C. Запитывать интегральную микросхему можно как от однополярного источника, так и двухполярного. Предел измерений от -55 ° до 150° C.

В качестве мультиметра можно использовать стрелочный или цифровой прибор. К датчику согласно схеме подключают источник питания. Например, КРОНу или три соединённых последовательно пальчиковых батарейки. Измеритель же подключают к клеммам V и COM и переводят в режим измерения температуры. Потребление датчика при работе не превышает 10 мкА.

Диапазон измерения мультиметра устанавливается на два вольта. Отображённый на экране результат и будет соответствовать измеряемой температуре. Последняя цифра в числе обозначает десятые доли градуса.

При желании устройство можно сделать двухканальным. Для этого дополнительно необходимо будет изготовить механический или электронный переключатель.

Цифровая схема

Одна из самых простых схем состоит всего из нескольких элементов. В основе конструкции лежит использование датчика, выдающего значение температуры в цифровом коде. Стоимость термодатчика LM 335 не превышает 50 центов, при этом после калибровки его точность измерения составляет от 0,3 ° до 1,5° C. Датчик может измерять температуру от — 40 ° до 100° C. Выпускается он в двух корпусах — TO-92 и SOIC. В качестве аналога можно использовать отечественную микросхему К1019ЕМ1.

При монтаже длина соединительных проводов может достигать пяти метров. Калибровка схемы осуществляется изменением напряжения, подаваемым на вывод один. Необходимое значение рассчитывается по формуле:

Uвых = Vвых1 * T / To, где:

  • Uвых – напряжение на выходе микросхемы;
  • Uвых1 – напряжение на выходе при эталонной температуре;
  • T и To – измеряемая и эталонная температура.

Напряжение, формирующее выходной сигнал, зависит от температуры, поэтому питание, подающееся на датчик, должно осуществляться от источника тока. Собирается он на двух транзисторах КТ209 и не требует дополнительных настроек. Максимальный ток питания не превышает 5 мА. Увеличение выходного напряжения на 10 мВ соответствует приросту температуры на один градус.

Использование микроконтроллера

Применение в схеме самодельного термометра микроконтроллера подразумевает использование программы, управляющей его работой. В качестве микросхемы применяется ATmega8, а датчика температуры — DS18B20.

В схеме используется небольшое число радиодеталей. Она несложная и не нуждается после сборки в какой-либо наладке. Напряжение питания микроконтроллера составляет пять вольт. Для его стабилизации используется микросхема L7805. Транзисторы можно использовать любые с NPN структурой. В качестве индикатора подойдёт трёхразрядный сегментный дисплей с общим катодом.

Температура устройством может изменяться в интервале от -55 ° до 125º С с шагом в 0,1º С. Погрешность измерения не превышает 0,5º С. Обмен данными между датчиком и микроконтроллером происходит по шине 1-Wire. При большом расстоянии выноса измерительной микросхемы DS18B20 от ATmega8 необходимо подобрать подтягивающее сопротивление. Распаять его лучше непосредственно на вывод датчика.

При программировании все установки микроконтроллера оставляются заводскими, и фьюзы не изменяются. Затем к собранному термометру можно добавить ещё один датчик, а также часы. Но для этого необходимо будет обладать знаниями в программировании, чтобы дописать программный код.

Точный термометр

Применение в качестве датчиков полупроводниковых диодов и транзисторов характеризуется сложностью калибровки показаний, что в итоге приводит к погрешности результата измерений. Поэтому для получения точного результата в качестве измерителя применяется бифилярно намотанная катушка из тонкого проводника, размещённая в цилиндре, имеющем размеры порядка 4×20 мм.

Основой конструкции является микросхема ICL707 и светящийся индикатор. Питание можно подавать от любого источника с выходной амплитудой 12 В. На DA3 собран нормирующий преобразователь, изменяющий своё выходное напряжение в зависимости от сигнала, поступаемого с датчика.

Настройка заключается в выставлении на 36 ноге микросхемы напряжения, равного одному вольту. Делается это с помощью резисторов R3 и R4. Вместо датчика подключают резистор на 100 Ом. Изменением сопротивления R14 устанавливают нули на цифровом индикаторе. После чего устройство готово к измерениям.

Загрузка... Цепь индукционного нагревателя

с использованием IGBT (протестировано)

В этом посте мы подробно обсуждаем, как построить цепь индукционного нагревателя высокой мощности 1000 Вт с использованием IGBT, которые считаются наиболее универсальными и мощными переключающими устройствами, даже превосходящими MOSFET.

Принцип работы индукционного нагревателя

Принцип работы индукционного нагрева очень прост для понимания.

Магнитное поле высокой частоты создается катушкой, присутствующей в индукционном нагревателе, и, таким образом, вихревые токи, в свою очередь, наводятся на металлический (магнитный) объект, находящийся в середине катушки, и нагревают его.

Чтобы компенсировать индуктивный характер катушки, параллельно катушке размещается резонансная емкость.

Резонансная частота - это частота, на которой должен работать резонансный контур (также известный как катушка-конденсатор).

Ток, протекающий через катушку, всегда намного больше, чем ток возбуждения. Схема IR2153 используется для обеспечения работы схемы в качестве «двойного полумоста» вместе с четырьмя управляемыми IGBT STGW30NC60W.

Двойной полумост передает такую ​​же мощность, что и полный мост, но драйвер затвора в первом случае проще.

IGBT STGW30NC60W

Использование антипараллельных диодов

Двойные диоды большого размера STTh300L06TV1 (2x 120A) используются в виде встречно-параллельных диодов. Даже если для этого хватит диодов поменьше размером 30А.

Если вы используете встроенные диоды IGBT, такие как STGW30NC60WD, вам не потребуется использовать диоды меньшего размера или большие двойные диоды.Потенциометр используется для настройки рабочей частоты в резонанс.

Один из лучших индикаторов резонанса - максимальная яркость светодиода. Вы, безусловно, можете создавать более сложные драйверы в зависимости от ваших требований.

Вы также можете использовать автоматическую настройку, которая является одним из лучших способов сделать, как это принято в профессиональных обогревателях; но есть один недостаток, заключающийся в том, что при этом будет потеряна простота схемы.

Вы можете управлять частотой, которая находится в диапазоне приблизительно от 110 до 210 кГц.Адаптер небольшого размера, который может быть трансформаторного типа или smps, используется для обеспечения вспомогательного напряжения 14-15 В, которое требуется в цепи управления.

Изолирующий трансформатор

Изолирующий трансформатор и согласующий дроссель L1 - это электрическое оборудование, которое используется для подключения выхода к рабочей цепи.

Оба этих индуктора присутствуют в конструкции с воздушным сердечником.

С одной стороны, где дроссель состоит из 4 витков на диаметре 23 см, разделительный трансформатор, с другой стороны, состоит из 12 витков на диаметре 14 см, и эти витки состоят из двухпроводного кабеля (как показано на приведенном рисунке ниже).

Даже когда выходная мощность достигает 1600 Вт, вы обнаружите, что есть еще много возможностей для улучшения.

Рабочая катушка предлагаемого индукционного нагревателя IGBT состоит из проволоки диаметром 3,3 мм.

Использование меди для катушки

Медный провод считается более подходящим для изготовления рабочей катушки, поскольку его можно легко и эффективно подключить к водяному охлаждению.

Катушка состоит из шести витков с размерами 23 мм в высоту и 24 мм в диаметре.Змеевик может нагреваться при длительной работе.

Резонансный конденсатор состоит из 23 конденсаторов небольшого размера, общая емкость которых составляет 2u3. Вы также можете использовать конденсаторы 100 нФ в таких конструкциях, как полипропилен класса X2 и 275 В MKP.

Вы можете использовать их для этой цели, даже если они в основном не предназначены или не созданы для таких целей.

Частота резонанса 160 кГц. Всегда рекомендуется использовать фильтр EMI.Плавный пуск можно использовать для замены вариак.

Я всегда настоятельно рекомендую вам использовать ограничитель, который подключается последовательно к сети, например, галогенные лампы и нагреватели приблизительно 1 кВт, когда он включается в первый раз.

Предупреждение: используемая цепь индукционного нагрева подключена к сети и содержит высокое напряжение, которое может привести к летальному исходу.

Во избежание несчастных случаев из-за этого следует использовать потенциометр с пластмассовой штангой.Электромагнитные поля высокой частоты всегда вредны и могут повредить носители информации и электронные устройства.

Цепь создает значительный уровень электромагнитных помех, что, в свою очередь, может вызвать поражение электрическим током, возгорание или ожоги.

Каждая задача или процесс, которые вы выполняете, вы выполняете на свой страх и риск, и ответственность будет лежать на вас, и я не буду нести ответственности за какой-либо ущерб, который может возникнуть при выполнении этого процесса.

Принципиальная схема

Схема мостового выпрямителя 220–220 В постоянного тока с предохранительной лампой

Дроссель L1

Конструкцию дросселя L1, используемого в приведенной выше схеме индукционного нагревателя с полным мостом на БТИЗ, можно увидеть на приведенном ниже изображении:

Это можно сделать, намотав 4 витка диаметром 23 см, используя любой толстый одножильный кабель.

На следующем изображении показана конструкция изолирующего трансформатора с воздушным сердечником и двойной спиралью :

Вы можете построить его, свернув 12 витков диаметром 14 см, используя любой толстый двойной проводной кабель.

Рабочая катушка может быть построена в соответствии со следующей инструкцией.

Обратите внимание, что если катушка намотана плотно, то может потребоваться только 5 витков. Если используется шесть витков, вы можете попробовать немного растянуть катушку для достижения оптимального резонанса и эффективности.

ОБНОВЛЕНИЕ

Добавление ограничения тока

На следующей диаграмме показано, как можно добавить простую функцию ограничения тока к описанной выше конструкции индукционного нагревателя.

Описание контактов оптопары TIL111

Здесь резистор около L1 (назовем его Rx) становится резистором, чувствительным к току, который развивает небольшое напряжение на себе до желаемой точки, когда ток начинает превышать безопасные пределы.

Это напряжение на Rx используется для срабатывания светодиода внутри подключенного оптопары. Выходной транзистор внутри оптоэлектронной схемы реагирует на срабатывание светодиода и быстро проводит заземление Ct, контакт № 3 основной микросхемы драйвера IR2153.

Микросхема немедленно отключается, запрещая дальнейшее повышение тока. Когда это происходит, ток падает, что, в свою очередь, снимает напряжение на Rx, тем самым выключая оптический светодиод. Это возвращает ситуацию к более ранней нормальной ситуации, и IC снова начинает колебаться. Теперь этот цикл быстро повторяется, обеспечивая постоянное потребление тока нагрузкой в ​​заданных безопасных пределах.

Rx = 2 / Current Limit

Отзыв от одного из специализированных читателей:

Уважаемый сэр! Я успешно сделал индукционный нагреватель 1/2 моста с 4 IGBT, и я хочу знать, что лампа нагревателя мощностью 1000 Вт Предлагаемый должен быть постоянно подключен к цепи или только до тестирования в первый раз.

Изображения результатов теста включены здесь под:

Ожидаем вашего ответа в ближайшее время. С уважением - Маниш.

Решение запроса схемы

Уважаемый Маниш,
Во время работы индукционного нагревателя вы видите какое-либо свечение на последовательной лампе?
Если да, то, вероятно, ее нельзя снять, если лампа в неосвещенном состоянии и полностью «холодная» (почувствуйте это, удерживая ее), то ее можно удалить.
С уважением

Отзыв от Mr.Саид Махдави

Дорогой Свагатам:

Наконец-то я смог заставить свою схему снова заработать после множества попыток. И я снял видео с раскаленным болтом.

Надеюсь, это может быть полезно тем, кто интересуется индукционными нагревателями. Подскажите, пожалуйста, как увеличить температуру, чтобы болт достиг точки плавления?

Напряжение в сети составляет 194 вольт, а ток, потребляемый схемой, составляет всего 5 ампер, а форма волны на осциллографе является синусоидальной.

В моем прототипе я добавил несколько витков к дросселю RFC, чтобы получить большее напряжение на рабочей катушке и потреблять меньше ампер.

БТИЗ работали нормально, не нагреваясь во время эксплуатации. Подскажите, пожалуйста, что мне делать, чтобы получить побольше и тепла. Большое спасибо

Саид Махдави

Видеоклип:

О Swagatam

Я инженер-электронщик (dipIETE), любитель, изобретатель, разработчик схем / печатных плат, производитель.Я также являюсь основателем веб-сайта: https://www.homemade-circuits.com/, где я люблю делиться своими инновационными идеями и руководствами по схемам.
Если у вас есть какой-либо вопрос, связанный со схемой, вы можете взаимодействовать с ним через комментарии, я буду очень рад помочь!

.Схема цифрового вольтметра

с использованием микросхемы L7107

В этом посте объясняется очень простая схема цифрового вольтметра панельного типа с использованием одной микросхемы L7107 и нескольких других обычных компонентов. Схема способна измерять напряжения вплоть до 2000 переменного / постоянного тока В.

Об IC L7107

Создание этой простой схемы цифрового панельного вольтметра особенно легко из-за наличия микросхемы процессора аналого-цифрового напряжения в виде Микросхема L7107.

Спасибо Intersil за предоставленную нам эту замечательную маленькую микросхему L7107, которую можно легко сконфигурировать в схему цифрового вольтметра с широким диапазоном, используя несколько обычных анодных семисегментных дисплеев.

IC 7107 - это универсальная ИС аналого-цифрового преобразователя с низким энергопотреблением на 3 и 1/2 разряда, которая имеет встроенные процессоры, такие как семисегментные декодеры, драйвер для дисплеев, установочные уровни и тактовые генераторы.

Микросхема работает не только с обычными семисегментными дисплеями CA, но и с жидкокристаллическими дисплеями (ЖК-дисплеями) и имеет встроенный мультиплексированный осветитель задней панели для подключенного ЖК-модуля.

Обеспечивает автоматическую коррекцию нуля для входов менее 10 мкВ, дрейф нуля для входов ниже 1 мкВ / oC, ток смещения для входов максимум 10 пА и ошибку перехода менее одного счета.

Для ИС можно установить диапазоны от 2000 В переменного / постоянного тока и до 2 мВ, что делает ИС очень подходящей для измерения низких входных сигналов от датчиков, таких как тензодатчики, пьезопреобразователи, тензодатчики и аналогичные мостовые преобразователи. сетей.

Другими словами, микросхема может быть просто сконфигурирована для изготовления таких продуктов, как цифровые весы, измерители давления, электронный тензодатчик, датчик вибрации, сигнализаторы удара и многие подобные схемы.

Излишне говорить, что IC L7107 также может быть встроен в простую, но точную схему панельного цифрового вольтметра, что нас сейчас интересует.

Работа цепи

На схеме ниже видно, что устройство представляет собой полноценную схему цифрового вольтметра, которую можно использовать для измерения постоянного напряжения от нуля до 199 вольт.

Диапазон можно соответствующим образом расширить или сократить, просто изменив номинал резистора 1M, установленного последовательно с входной клеммой. При 1M диапазон дает полную шкалу 199,99 В, при 100K диапазон станет 19,99 В.

Схема требует двойного источника питания +/- 5 В для работы, здесь + 5 В может быть строго получено от стандартной схемы регулятора 7805 IC, -5 В автоматически создается IC 7660 и подается на контакт № 26 цепи Микросхема L7106.

Три диода 1N4148, соединенные последовательно с линией питания дисплея, обеспечивают оптимальное рабочее напряжение дисплеев для их освещения с правильной интенсивностью, однако для более яркого освещения количество диодов может быть изменено в соответствии с личными предпочтениями.

Предварительная установка 10K на контакте №35 / 36 используется для правильной калибровки вольтметра и должна быть настроена так, чтобы на контакте №35 / 36 было ровно 1В. Это настроит схему для точного отображения измеренных величин в соответствии с данными спецификациями и таблицей данных IC.

Список деталей

Все резисторы имеют мощность 1/4 Вт, если не указано иное

  • 220 Ом - 1
  • 10K = 1
  • 1M = 1
  • 47K = 1
  • 15K = 1
  • 100K = 1
  • предустановка / подстроечный резистор 10K = 1

Конденсаторы

  • 10 нФ Керамический диск = 1
  • 220 нФ Керамический диск = 1
  • 470 нФ Керамический диск = 1
  • 100 нФ или 0,1 мкФ Керамический диск = 1
  • 100 пФ Керамический диск = 1
  • 10 мкФ / 25 В, электролитический = 2

Полупроводники

  • 1N4148 Диоды = 3
  • 7-сегментные дисплеи MAN6910 или эквивалент = 2
  • IC L7106 = 1
  • IC 7660 = 1
Детали распиновки IC L7106 для взаимодействия с 3 и 1/2 цифровым ЖК-дисплеем.
О Swagatam

Я инженер-электронщик (dipIETE), любитель, изобретатель, разработчик схем / печатных плат, производитель. Я также являюсь основателем веб-сайта: https://www.homemade-circuits.com/, где я люблю делиться своими инновационными идеями и руководствами по схемам.
Если у вас есть какие-либо вопросы, связанные со схемами, вы можете взаимодействовать с ними через комментарии, я буду очень рад помочь!

.

Самодельная солнечная схема MPPT - трекер максимальной мощности для бедняков

MPPT означает трекер максимальной мощности, который представляет собой электронную систему, предназначенную для оптимизации изменяющейся выходной мощности модуля солнечной панели, чтобы подключенная батарея использовала максимальную доступную мощность от солнечная панель.

Введение

ПРИМЕЧАНИЕ: Обсуждаемые в этом посте схемы MPPT не используют традиционные методы управления, такие как «Возмущение и наблюдение», «Инкрементная проводимость», «Развертка по току», «Постоянное напряжение».... и т. д. и т. д ... Скорее здесь мы сконцентрируемся и попробуем реализовать пару основных вещей:

  1. Чтобы убедиться, что входная «мощность» от солнечной панели всегда равна выходной «мощности», достигающей нагрузить.
  2. Нагрузка никогда не нарушает «напряжение колена», и зона MPPT панели эффективно поддерживается.

Что такое напряжение колена и ток панели:

Проще говоря, напряжение колена - это «напряжение холостого хода» уровня панели, а ток колена - это «ток короткого замыкания», мера панель в любой момент.

Если указанные выше два поддерживаются в максимально возможной степени, можно предположить, что нагрузка получает мощность MPPT на протяжении всей своей работы.

Прежде чем мы углубимся в предлагаемые конструкции, давайте сначала познакомимся с некоторыми основными фактами, касающимися зарядки солнечных батарей

Мы знаем, что мощность солнечной панели прямо пропорциональна степени падающего солнечного света, а также окружающей среды. температура. Когда солнечные лучи перпендикулярны солнечной панели, она генерирует максимальное количество напряжения и ухудшается при изменении угла от 90 градусов. Температура воздуха вокруг панели также влияет на эффективность панели, которая падает с увеличением температуры. ,

Таким образом, мы можем заключить, что когда солнечные лучи находятся около 90 градусов над панелью и когда температура составляет около 30 градусов, эффективность панели приближается к максимуму, скорость уменьшается по мере того, как два вышеуказанных параметра отклоняются от своих номинальных значений. ценности.

Указанное выше напряжение обычно используется для зарядки аккумулятора, свинцово-кислотного аккумулятора, который, в свою очередь, используется для работы инвертора. Однако так же, как солнечная панель имеет свои собственные критерии работы, батарея тоже не меньше и предлагает некоторые строгие условия для оптимальной зарядки.

Условия заключаются в том, что аккумулятор сначала должен заряжаться относительно более высоким током, который необходимо постепенно снижать почти до нуля, когда аккумулятор достигает напряжения на 15% выше его нормального номинального значения.

Предполагая, что полностью разряженная аккумуляторная батарея 12 В с напряжением около 11,5 В может быть первоначально заряжена со скоростью около C / 2 (C = AH батареи), это начнет заряжать аккумулятор относительно быстро и снизит его напряжение до может быть около 13V в течение пары часов.

На этом этапе ток должен быть автоматически уменьшен до уровня C / 5, это снова поможет сохранить быстрый темп зарядки, не повредив аккумулятор, и повысит его напряжение примерно до 13,5 В в течение следующего часа.

Следуя вышеуказанным шагам, теперь ток может быть дополнительно уменьшен до скорости C / 10, что гарантирует, что скорость зарядки и темп не замедляются.

Наконец, когда напряжение батареи достигает примерно 14,3 В, процесс может быть снижен до скорости C / 50, которая почти останавливает процесс зарядки, но ограничивает падение заряда до более низких уровней.

Весь процесс заряжает глубоко разряженную батарею в течение 6 часов, не влияя на срок службы батареи.

MPPT используется именно для обеспечения оптимального извлечения вышеуказанной процедуры из конкретной солнечной панели.

Солнечная панель может быть не в состоянии обеспечить выходы с высоким током, но она определенно способна обеспечить более высокие напряжения.

Уловка состоит в том, чтобы преобразовать более высокие уровни напряжения в более высокие уровни тока посредством соответствующей оптимизации выходной мощности солнечной панели.

Теперь, поскольку преобразование более высокого напряжения в более высокий ток и наоборот может быть реализовано только с помощью повышающих понижающих преобразователей, новаторский метод (хотя и немного громоздкий) будет заключаться в использовании цепи переменного индуктора, в котором индуктор будет иметь много переключаемых ответвлений. эти отводы могут переключаться переключающей схемой в ответ на изменяющийся солнечный свет, так что выходная мощность нагрузки всегда остается постоянной, независимо от солнечного света.

Концепцию можно понять, обратившись к следующей схеме:

Принципиальная схема

Использование LM3915 в качестве главного процессора IC

Основным процессором на приведенной выше схеме является IC LM3915, которая переключает свои выходные выводы последовательно сверху снизу в ответ на убывающий солнечный свет

Эти выходы можно увидеть в конфигурации с импульсными силовыми транзисторами, которые, в свою очередь, подключены к различным ответвлениям ферритовой одиночной длинной катушки индуктивности.

Самый нижний конец катушки индуктивности можно увидеть присоединенным к силовому транзистору NPN, который переключается на частоте около 100 кГц от внешне настроенной схемы генератора.

Силовые транзисторы, подключенные к выходам переключателя IC в ответ на упорядочение выходов IC, соединяют соответствующие отводы катушки индуктивности с напряжением панели и частотой 100 кГц.

Эти витки индуктивности рассчитываются соответствующим образом, так что его различные отводы становятся совместимыми с напряжением панели, поскольку они переключаются каскадами выходного драйвера IC.

Таким образом, процедура гарантирует, что, хотя интенсивность солнечного света и напряжение падают, они должным образом связаны с соответствующим отводом индуктора, поддерживающим почти постоянное напряжение на всех данных отводах в соответствии с их расчетными номиналами.

Давайте разберемся в функционировании с помощью следующего сценария:

Предположим, что катушка выбрана совместимой с солнечной панелью 30 В, поэтому при пиковом солнечном свете предположим, что самый верхний мощный транзистор включается микросхемой, которая подчиняется вся катушка колеблется, это позволяет всем 30 В быть доступным на крайних концах катушки.

Теперь предположим, что солнечный свет падает на 3 В и снижает выходное напряжение до 27 В, это быстро обнаруживается ИС, так что первый транзистор сверху теперь выключается, а второй транзистор в последовательности переключается.

Вышеупомянутое действие выбирает второй отвод (отвод 27 В) индуктора сверху, выполняя согласование отвода индуктора с характеристикой напряжения, гарантируя, что катушка оптимально колеблется с пониженным напряжением ... аналогично, теперь, когда напряжение солнечного света падает дальше, соответствующие транзисторы «обмениваются рукопожатием» с соответствующими ответвлениями катушки индуктивности, обеспечивая идеальное согласование и эффективное переключение катушки индуктивности в соответствии с имеющимся напряжением солнечной батареи.

Из-за вышеупомянутой согласованной реакции между солнечной панелью и переключающей промежуточной / повышающей индуктивностью ... можно предположить, что напряжения отводов в соответствующих точках поддерживают постоянное напряжение в течение всего дня, независимо от ситуации солнечного света ....

Например, предположим, что если индуктор спроектирован для выработки 30 В на самом верхнем отводе, за которым следуют 27, 24 В, 21 В, 18 В, 15 В, 12 В, 9 В, 6 В, 3 В, 0 В на последующих отводах, тогда все эти напряжения могут быть приняты. быть постоянным над этими кранами независимо от уровня солнечного света.

Также помните, что это напряжение может быть изменено в соответствии со спецификациями пользователя для достижения более высоких или более низких напряжений, чем напряжение панели.

Вышеупомянутая схема также может быть настроена в схеме обратного хода, как показано ниже:

В обеих вышеупомянутых конфигурациях выход должен оставаться постоянным и стабильным с точки зрения напряжения и мощности независимо от солнечной мощности.

Использование метода отслеживания I / V

Следующая схема цепи гарантирует, что уровень MPPT панели никогда не будет существенно нарушен нагрузкой.

Схема отслеживает уровень «колена» MPPT панели и следит за тем, чтобы нагрузка не потребляла больше ничего, что могло бы вызвать падение этого уровня колена панели.

Давайте узнаем, как это можно сделать, используя простую схему отслеживания I / V на одном операционном усилителе.

Обратите внимание, что конструкции без понижающего преобразователя никогда не смогут оптимизировать избыточное напряжение в эквивалентный ток для нагрузки и могут выйти из строя в этом отношении, что считается важнейшей особенностью любой конструкции MPPT.

Очень простое, но эффективное устройство типа MPPT может быть сделано с использованием микросхемы LM338 и операционных усилителей.

В этой концепции, разработанной мной, операционный усилитель сконфигурирован таким образом, что он продолжает записывать мгновенные данные MPP панели и сравнивать их с мгновенным потреблением нагрузки. Если он обнаруживает, что потребление нагрузки превышает эти сохраненные данные, он отключает нагрузку ...


Ступень IC 741 представляет собой секцию солнечного трекера и составляет основу всей конструкции.

Напряжение солнечной панели подается на инвертирующий вывод 2 ИС, в то время как то же самое подается на неинвертирующий вывод 3 с падением около 2 В с использованием трех последовательно соединенных диодов 1N4148.

Вышеупомянутая ситуация постоянно поддерживает вывод 3 микросхемы в тени ниже, чем вывод 2, обеспечивая нулевое напряжение на выходном выводе 6 микросхемы.

Однако в случае неэффективной перегрузки, такой как несоответствующая батарея или сильноточная батарея, напряжение солнечной панели имеет тенденцию снижаться под нагрузкой.Когда это происходит, напряжение на выводе 2 также начинает падать, однако из-за наличия конденсатора 10 мкФ на выводе 3 его потенциал остается твердым и не реагирует на вышеуказанное падение.

Ситуация мгновенно вынуждает вывод 3 перейти на более высокий уровень, чем вывод 2, который, в свою очередь, переключает высокий уровень на выводе 6, включая BJT BC547.

BC547 теперь немедленно отключает LM338, отключая напряжение на батарее, цикл продолжает переключаться в быстром темпе в зависимости от номинальной скорости ИС.

Вышеупомянутые операции гарантируют, что напряжение солнечной панели никогда не упадет и не будет сброшено нагрузкой, поддерживая состояние, подобное MPPT на всем протяжении.

Поскольку используется линейная микросхема LM338, схема может быть снова немного неэффективной ... выход - заменить каскад LM338 понижающим преобразователем ... что сделало бы конструкцию чрезвычайно универсальной и сопоставимой с настоящей MPPT.

Ниже показана схема MPPT, использующая топологию понижающего преобразователя, теперь эта конструкция имеет большой смысл и выглядит намного ближе к истинной схеме MPPT

48V MPPT Circuit

Вышеупомянутые простые схемы MPPT также могут быть изменены для реализации высокого напряжение зарядки аккумулятора, например, следующая схема зарядного устройства MPPT аккумулятора 48 В.

Все идеи разработаны мной.

О компании Swagatam

Я инженер-электронщик (dipIETE), любитель, изобретатель, разработчик схем / печатных плат, производитель. Я также являюсь основателем веб-сайта: https://www.homemade-circuits.com/, где я люблю делиться своими инновационными идеями и руководствами по схемам.
Если у вас есть запрос, связанный со схемой, вы можете взаимодействовать с ним через комментарии, я буду очень рад помочь!

.

4 Простые схемы детектора движения с использованием PIR

Датчик движения PIR - это устройство, которое обнаруживает инфракрасное излучение от движущегося человеческого тела и включает звуковой сигнал.

В посте рассматриваются 4 простые схемы детектора движения, использующие операционный усилитель и транзистор. Мы также обсуждаем детали распиновки стандартного пассивного инфракрасного (PIR) датчика RE200B.

Мы узнаем:

  1. Как использовать датчик PIR для обнаружения инфракрасного излучения человеческого тела.
  2. Как использовать модуль PIR в качестве цепи охранной сигнализации
  3. Как использовать PIR для включения освещения при обнаружении присутствия человека.
  4. Как применить ИК-датчик для обнаружения объекта в промышленных приложениях

В первой схеме используется операционный усилитель, а во второй схеме используется один транзистор и реле для обнаружения ИК-излучения от движущегося человеческого тела и активации реле активировало сигнал тревоги

Что такое PIR

PIR - это аббревиатура от Passive Infra Red.Термин «пассивный» указывает на то, что датчик не принимает активного участия в процессе, то есть он сам не излучает упомянутые инфракрасные сигналы, а скорее пассивно обнаруживает инфракрасное излучение, исходящее от находящихся поблизости теплокровных животных.

Обнаруженное излучение преобразуется в электрический заряд, пропорциональный обнаруженному уровню излучения. Затем этот заряд дополнительно усиливается встроенным полевым транзистором и подается на выходной контакт устройства, который становится применимым к внешней цепи для дальнейшего усиления и запуска ступеней сигнализации.

Распиновка датчика PIR

На изображении показана типичная схема расположения выводов датчика PIR. Распиновка довольно проста для понимания, и их можно легко сконфигурировать в рабочую схему с помощью следующих пунктов:

Как показано на следующей схеме, PIN # 3 датчика должен быть подключен к земле или к минусу. рельс подачи.

Контакт № 1, который соответствует клемме «стока» устройства, должен быть подключен к положительному источнику питания, который в идеале должен быть 5 В постоянного тока.

И контакт № 2, который соответствует «истоку» датчика, должен быть подключен к земле через резистор 47 кОм или 100 кОм. Этот контакт также становится выходным контактом устройства, и обнаруженный инфракрасный сигнал передается на усилитель от контакта №2 датчика.

1) Схема PIR-детектора движения человека с использованием ОУ

В предыдущем разделе мы изучили техническое описание и распиновку стандартного ИК-датчика. Теперь давайте продолжим и изучим простое приложение для того же:

Первый Схема PIR для обнаружения движущихся людей показана выше.Здесь можно увидеть практическую реализацию объясненных деталей распиновки.

В присутствии инфракрасного излучения человека датчик обнаруживает излучение и мгновенно преобразует его в мельчайшие электрические импульсы, достаточные для того, чтобы транзистор стал проводящим, заставив его коллектор опуститься.

IC 741 был настроен как компаратор, где его контакт № 3 назначен как опорный вход, а контакт № 2 как вход считывания.

В момент, когда на коллекторе транзистора устанавливается низкий уровень, потенциал на выводе №2 микросхемы 741 IC становится ниже, чем на выводе №3.Это мгновенно повышает уровень на выходе ИС, вызывая срабатывание каскада драйвера реле, состоящего из другого транзистора BC547 и реле.

Реле активирует и включает подключенное устройство сигнализации.

Конденсатор 100 мкФ / 25 В гарантирует, что реле остается включенным даже после отключения ИК-датчика, возможно, из-за выхода источника излучения.

Обсуждаемое выше устройство PIR на самом деле является стержневым датчиком и может быть чрезвычайно чувствительным и трудным для оптимизации.Чтобы стабилизировать его чувствительность, датчик должен быть соответствующим образом заключен в крышку линзы Френеля, это дополнительно увеличит радиальный диапазон обнаружения.

Если вы не уверены в использовании открытого ИК-устройства, вы можете просто купить готовый ИК-модуль с линзой и другими улучшениями, как описано ниже.

2) ПИК-датчик движения и цепь охранной сигнализации

Следующая схема ИК-датчика движения может быть легко построена с использованием следующей базовой настройки и применена в качестве цепи противоугонной сигнализации .

Как показано на рисунке, для внешнего подключения PIR требуется только один резистор 1 кОм, транзистор и реле. Сирену можно построить дома или купить уже готовой.

Питание 12 В может быть от любой обычной схемы SMP 12 В 1 А.

Видео демонстрация

3) Еще одна простая схема сигнализации на основе PIR

Третья идея ниже объясняет простую схему сигнализации датчика движения PIR , которую можно использовать для включения света или сигнала тревоги только в присутствии человека или злоумышленника.

Как это работает

Вот простая схема, которая активирует реле тревоги, когда датчик PIR обнаруживает живое существо (человека). Здесь PIR означает пассивный инфракрасный датчик. Он не производит никаких инфракрасных излучений для обнаружения присутствия живых существ, но, с другой стороны, он обнаруживает инфракрасное излучение, испускаемое ими.

В этой схеме используется микросхема HC-SR501, которая является сердцем схемы. Первоначально, когда движущийся объект обнаруживается датчиком, он выдает небольшое напряжение сигнала (обычно 3.3 вольта), который подается на базу транзистора BC547 через резистор регулирования тока и, следовательно, его выход становится высоким, и он включает реле.

Более подробная схема может быть визуализирована ниже:

Подключение реле

Это реле может быть настроено для использования с электрической лампочкой или лампой, ночником или чем-либо еще, что работает от 220 В переменного тока.

Эта схема в основном используется в садах, поэтому ночью, когда мы идем гулять в сад, схема автоматически включает свет, и он остается включенным, пока мы не окажемся рядом с датчиком, и он отключается, когда мы отойти от этого места и тем самым снизить затраты на электроэнергию.

Вот вид датчика сзади HC-SR501…

HC-SR501 Распиновка

PIR Sensor Front View:

Датчик состоит из двух предварительно настроенных резисторов, которые можно использовать для управления временем задержки и диапазоном срабатывания.

Потенциометр задержки можно отрегулировать, чтобы определить время, в течение которого свет остается включенным.

Датчик при покупке поставляется с режимом по умолчанию «H», что означает, что схема включает свет, когда кто-то перемещается в зоне, и он остается включенным в течение заданного времени и по истечении заданного времени, если датчик все еще может обнаруживает движение, он не выключает свет при отсутствии движущейся цели, он выключает свет.

Вот технические детали датчика HC-SR501

  1. Диапазон рабочего напряжения: от 4,5 до 12 В постоянного тока.
  2. Потребление тока: <60 мкА
  3. Выходное напряжение: 3,3 В TTL
  4. Расстояние обнаружения: от 3 до 7 метров (можно регулировать)
  5. Время задержки: от 5 до 200 секунд (можно регулировать)

Один из недостатков Датчик PIR заключается в том, что его мощность увеличивается, даже когда крыса, собака или другое животное движется перед ними, и он включает свет без необходимости.

В холодных странах дальность срабатывания датчика увеличивается. Из-за низкой температуры инфракрасное излучение, испускаемое людьми, распространяется на большие расстояния и, следовательно, вызывает ненужное переключение света.

При установке на заднем дворе существует вероятность включения света при проезде автомобиля, потому что излучение горячего двигателя автомобиля вводит датчик в заблуждение.

ПЕРЕЧЕНЬ ДЕТАЛЕЙ:
  • D1, D2 - 1N4007,
  • C1 - 1000 мкФ, 25 В,
  • Q1 - BC547,
  • R1 - 10K,
  • R2 - 1K,
  • L1 - светодиод (зеленый)
  • RY1 - Реле 12В
  • T1 - Трансформатор 0-12В.

После завершения построения схемы, заключите ее в подходящий кожух и используйте отдельный кожух для датчика и подключите датчик к цепи с помощью длинных проводов, чтобы вы могли разместить датчик в любом месте, которое вы хотите, например в саду. и цепь будет внутри, так что цепь будет защищена от погодных условий.

И не забудьте использовать отдельную печатную плату для реле.

Также не забудьте использовать подходящее реле с правильными значениями тока и напряжения. Вы можете использовать клеммную колодку, которая подключается к переключающим контактам реле, и расположить ее, как показано на рисунке, чтобы вы могли легко заменить электрическое устройство, подключенное к контактам реле.

Использование этих датчиков значительно экономит электроэнергию. Это также может снизить ваши счета за электричество!

«ПОЖАЛУЙСТА, СОХРАНИТЕ ЭНЕРГИЮ НА СЛЕДУЮЩИЙ ЧАС!»

Если вышеупомянутая конструкция детектора движения PIR предназначена для использования с сигнализацией и лампой, так что обе нагрузки работают в ночное время, а сигнализация - только днем, то диаграмму можно изменить следующим образом. Идея была предложена г-ном Манджунатхом

4) Промышленное приложение

Пост иллюстрирует схему промышленного датчика движения с использованием пары LDR, IC и нескольких других пассивных компонентов.Схема определяет движение цилиндра, загорая соответствующие светодиоды для требуемого обнаружения. Идея была предложена мистером Хаснейном.

Технические характеристики

Я отправил вам запрос в учетной записи Google, я не уверен, получили ли вы мои сообщения или нет, поэтому я снова отправляю вам свою проблему здесь, пожалуйста, помогите мне, я буду вам очень благодарен, Я надеюсь, вы поймете мою проблему и решите ее ...

сэр, это связано с обнаружением движения, и я ничего не знаю о датчиках, которые я должен использовать.. проблема: есть два уровня (уровень означает высоту), уровень A и уровень B. height A> height Bi хочу использовать датчики на этих уровнях, поэтому с этого момента я буду говорить датчик A и датчик B ..

У меня есть две сигнальные лампы, КРАСНАЯ и ЗЕЛЕНАЯ, есть цилиндр, который движется вверх-вниз, затем вниз вверх и так далее .. сначала он будет двигаться вверх-вниз и окажется перед датчиком A.

(в это время должен загореться КРАСНЫЙ свет, а ЗЕЛЕНЫЙ погаснуть), и движущийся вниз цилиндр будет перед датчиком B.

(это не должно иметь значения, т. Е. КРАСНЫЙ должен оставаться включенным, а ЗЕЛЕНЫЙ - ВЫКЛЮЧЕННЫМ).

, тогда цилиндр начнет двигаться вверх, сначала он отодвинется от датчика B.

(в это время КРАСНЫЙ должен погаснуть, а ЗЕЛЕНЫЙ включиться), затем движение вверх цилиндр отодвинется от датчика A,

(это не должно иметь значения. Т.е. КРАСНЫЙ должен оставаться ВЫКЛЮЧЕННЫМ, а ЗЕЛЕНЫЙ должен оставаться ВКЛЮЧЕННЫМ) .. затем снова повторите.

Схема Des ign

Предложенная идея довольно проста и может быть понята с помощью следующих пунктов:

При включении питания IC сбрасывается через 0,1 мкФ конденсатор, обеспечивающий включение зеленого светодиода первым.

В этом положении оба датчика sensorA (LDR1) и sensorB (LDR2) могут получать свет от соответствующих лазерных лучей, сфокусированных на них. LDR1 включает транзистор BC547, а LDR2 делает то же самое для BC557 и поддерживает его срабатывание.

Из-за вышеуказанных действий транзистор BC557 передает напряжение питания на вывод № 14 ИС. Однако, поскольку LDR1 и BC547 также проводят, этот потенциал заземляется, а общий потенциал на выводе № 14 остается на низком логическом уровне или на нуле.

Теперь, когда цилиндр опускается и приближается к LDR1, он блокирует луч, делая сопротивление LDR1 высоким, отключая BC547.

Это позволяет напряжению от BC557 попадать на контакт № 14, создавая прямую последовательность на выходе IC, в результате чего загорается красный светодиод и выключается зеленый светодиод.

Цилиндр продолжает свое движение вниз и приближается к LDR2, блокируя его луч и снижая его сопротивление, это останавливает транзистор от проводимости, так что потенциал на выводе № 14 IC снова переключается обратно на ноль, однако это действие делает не влияет на ИС, так как указано, что она реагирует только на положительные импульсы.

Затем цилиндры возвращаются в исходное положение и начинают двигаться вверх и в ходе этого процесса разблокируют луч LDR2, позволяя BC557 проводить, и снова положительный импульс от транзистора попадает на вывод # 14 IC, что приводит к восстановлению предыдущего ситуация i.е. теперь горит зеленый светодиод, а КРАСНЫЙ гаснет. Когда цилиндр движется мимо LDR1, BC547 также включается, но не работает по тем же причинам, которые описаны выше.

Вышеупомянутый цикл обнаружения движения продолжает повторяться в ответ на указанное движение цилиндра.

Принципиальная схема

PIR охранная сигнализация с эффектом задержки

Когда срабатывает PIR, BC547 включается, что, в свою очередь, побуждает TIP127 включиться. Однако из-за наличия конденсатора 220 мкФ напряжение база-эмиттер этого PNP-транзистора не может достичь требуемого 0.7V быстро, и светодиод не загорится, пока 220uF не будет полностью заряжен.

Когда PIR выключен, 220 мкФ может быстро разряжаться через резистор 56 кОм, быстро переводя схему в состояние ожидания. Диод 1N4148 гарантирует, что схема работает только как задержка включения ИК-цепи, а не как задержка выключения.

О компании Swagatam

Я инженер-электронщик (dipIETE), любитель, изобретатель, разработчик схем / печатных плат, производитель. Я также являюсь основателем сайта: https: // www.homemade-circuits.com/, где я люблю делиться своими новаторскими идеями и руководствами по схемам.
Если у вас есть запрос, связанный со схемой, вы можете взаимодействовать с ним через комментарии, я буду очень рад помочь!

.

Смотрите также