Вход на сайт

Зарегистрировавшись на сайте Вы сможете добавлять свои материалы






Самодельный повышающий трансформатор


Трансформатор своими руками: пошаговая инструкция

Несмотря на многообразие электрооборудования на рынке, далеко не во всех ситуациях можно найти подходящий преобразовательный агрегат для решения конкретной задачи. Поэтому многие обыватели пытаются изготовить  трансформатор своими руками для получения определенных параметров работы. Стоит отметить, что намотать трансформатор может каждый, даже без специализированного оборудования и особых навыков, но этот процесс довольно трудоемкий и кропотливый. Поэтому изначально вам придется определиться с типом и характеристиками прибора.

Что понадобится для сборки?

Все преобразователи подразделяются на две основные категории – повышающие и понижающие трансформаторы.

В зависимости от предназначения, конструктивных особенностей и места установки их можно разделить на такие категории:

Практически каждое из вышеперечисленных устройств вы можете воссоздать в домашних условиях. Наиболее простым вариантом является перемотка трансформатора из заводского изделия, так как он уже содержит необходимые элементы. Главное, чтобы первичная обмотка подходила по номиналу питающего напряжения и мощности. Куда хуже, если перематывать нужно обе обмотки, к примеру, если и первичная, и вторичная обмотка пробиты или получили механическое повреждение.

Для изготовления трансформатора своими руками вам понадобятся:

  • Магнитопровод – служит в качестве проводника магнитного потока, лучше взять из старого трансформатора, так как он изготовлен из электротехнической стали и обеспечивает необходимые параметры работы, характеризуется малыми потерями в железе.
  • Провода нужного вам сечения в лаковой, полимерной или стеклотканевой изоляции. Чем тоньше этот слой, тем плотнее прилягут витки к каркасу и друг к другу.
  • Каркас – служит в качестве основания для обмоток трансформатора, устанавливает габариты по ширине. Можно взять из старого трансформатора, а можно изготовить своими руками. Материалом для каркаса может послужить электротехнический картон, гетинакс или текстолит, важно чтобы он не занимал много места в зазоре между сердечником и проводом.
  • Изоляция – предназначена для электрического отделения токоведущих элементов друг от друга и от конструктивных элементов трансформатора. В промышленном производстве используется лакотканевая лента, фторопласт, парафиновая пропитка, но при самостоятельном изготовлении подойдет любой имеющийся у вас материал, главное, чтобы его диэлектрической прочности хватало для напряжения сети.
  • Намоточный станок – позволяет упростить процесс и обеспечить постоянное натяжение. Можно изготовить своими руками из ручной дрели или по принципу вертела на двух шарнирах. Важно, чтобы изготовленный станок имел как можно меньший люфт.

Помимо этого вам могут пригодиться: молоток с деревянной пресс-планкой, паяльник для соединения проводов, ножницы, пассатижи. Но перед изготовлением, обязательно рассчитайте параметры трансформатора.

Расчеты

Рис. 1: принципиальная схема трансформатора

Наиболее сложный вариант, если вы будете изготавливать трансформатор своими руками с нуля. В таком случае расчет электрической машины производится в зависимости от выходной мощности. Исходя из этого параметра, рассчитывается мощность первичной обмотки. Если вы используете заводской сердечник, то можно считать эти величины одинаковыми, если вы соберете его самостоятельно, то P2 = 0,9 * P1

Это приблизительный расчет с учетом потерь в сердечнике. В зависимости от качества шихтовки своими руками, разница мощностей может находиться в пределах от 5 до 20%.

В зависимости от мощности первички определяется сечение магнитопровода, которое вычисляется по формуле: S = √P1

Следует отметить, что мощность для вычислений берется в Ваттах, а размеры сердечника получаем в квадратных сантиметрах.

Далее определяется коэффициент передачи электромагнитной энергии: k = f/S, 

Где k – коэффициент передачи, f – частота сетевого напряжения переменного тока, S – площадь сечения магнитопровода.

Исходя из полученного коэффициента, определяется число витков в обмотках по величине входных и выходных напряжений: N1 = k*U1, N2 = k*U2

Это приблизительные вычисления, предназначенные для бытового применения радиолюбителями. Заводские трансформаторы имеют более сложную процедуру расчета, которая производится по справочникам и зависит от их типа и назначения (силовые, измерительные, трехобмоточные, тороидальные устройства и т.д.)

Далее рассчитывается сила тока в первичной обмотке трансформатора: I1 = P/ U1

Соответственно, ток, протекающий по вторичной обмотке трансформатора, вычисляется по  формуле: : I2 = P/ U2

Исходя из величины тока в каждой обмотке, выбирается сечение жилы. Но заметьте, что проводник в обмотке значительно хуже охлаждается, поэтому запас сечения делается на 20 – 30%. Проще выполнять данную работу медными проводами, но это требование не критично.

Таблица: выбор сечения, в зависимости от протекающего тока

Медный проводник Алюминиевый проводник
Сечение жил, мм2 Ток, А Сечение  жил. мм2 Ток, А
0,5 11
0,75 15
1 17
1.5 19 2,5 22
2.5 27 4 28
4 38 6 36
6 46 10 50
10 70 16 60
16 80 25 85
25 115 35 100
35 135 50 135
50 175 70 165
70 215 95 200
95 265 120 230
120 300    

Сборка повышающего трансформатора

Особенностью повышающего трансформатора является большее сечение жил первичной обмотки трансформатора по отношению к вторичной. Ярким примером может служить любой агрегат, повышающий напряжение питания 220 Вольт до 400, 500, 1000 В и т.д., соответственно класс изоляции трансформатора выбирается по номиналу вторичной обмотки, как в сетевых трансформаторах.

Заметьте, что проводник большого сечения не получится намотать самодельным станком, поскольку вы не сможете выдать достаточное усилие. Определить это довольно просто – если первые витки свободно двигаются по каркасу катушки или хуже того, вы видите явный зазор между жилой и каркасом, переходите к ручной намотке.

Для сборки вам потребуется выполнить такую последовательность действий:

  • Соберите основание из диэлектрического материала, для этого можно вырезать его по лекалу из картона. Сборка каркаса производится внахлест при помощи клея. Рис. 2: изготовьте каркас для трансформатора

Если у вас имеется готовый образец, можете переходить к следующему этапу.

  • Сделайте отверстия в щеке катушки под выводы в электрическую сеть и к потребителю. Проденьте в них выводы. Рис. 3: проденьте вывод первичной обмотки
  • Уложите первый слой изоляции под первичку. Рис. 4: нанесите слой изоляции на катушку
  • Намотайте первичную обмотку трансформатора – если позволяет толщина, используйте станок, в противном случае, сделайте это руками. При намотке каждые 4 -5 витков проверяйте жесткость фиксации и плотность прилегания. Рис. 5: намотайте первичку

В случае наличия видимых зазоров рекомендуется придавливать витки деревянной пресс-плашкой или прибивать их через плашку молотком.

  • Посчитайте количество витков, оно должно соответствовать расчетному, выводы проденьте в отверстия. Уложите слой изоляции на первичку.
  • После слоя изоляции намотайте вторичку, так как здесь будет использоваться более тонкий провод, эту процедуру проще выполнять на станке. Рис. 6: намотайте вторичную обмотку

Периодически проверяйте плотность витков и их фиксацию на стержне. Хорошая фиксация не должна прогибаться и деформироваться при нажатии пальцами.

  • Если все витки не помещаются в один слой, их выкладывают в несколько, тогда важно соблюдать одно и то же количество витков в каждом из них. Слои перекладываются диэлектрическим материалом, заметьте, что толщина изоляции не должна существенно влиять на общие габариты катушек. Рис. 7: заизолируйте первый слой
  • Выведете концы вторичной обмотки на щечку каркаса.
  • Поместите магнитопровод в окно каркаса, сборка сердечника выполняется поочередно с каждой стороны, иначе потери окажутся слишком большими. Затем сердечник распирается для плотности фиксации. Рис. 8: поместите катушки на сердечник

Мощные трансформаторы на большой номинал напряжения дополнительно пропитывается парафиновой изоляцией. Такая процедура приводит к повышению емкостных потерь, но создает дополнительную защиту от электрического тока.

Сборка понижающего трансформатора

Понижающий трансформатор будет отличаться большим количеством витков на первичке. В быту их можно часто встретить в блоках питания, сварочных аппаратах и прочем оборудовании. Правда, в импульсных блоках используется другая технология, поэтому ремонт таких устройств производится без трансформаторов.

Так как изготовление сварочного трансформатора своими руками довольно актуально для домашних самоделок, рассмотрим на примере этот вариант. Требования к процессу сборки соответствует предыдущему. Отличительной особенностью такого агрегата является большое сечение провода во вторичной обмотке, так как сварочный ток может достигать сотен ампер.

Процесс изготовления заключается в следующем:

  1. Возьмите старое или изготовьте основание для катушки.
  2. Зафиксируйте на трансформаторном каркасе слой изоляции.
  3. Намотайте первичную обмотку с попеременной изоляцией слоев.
  4. Заизолируйте первичку и намотайте вторичную обмотку, так как большой диаметр проводов не позволит сделать это вручную, используйте слесарный инструмент.
  5. Зафиксируйте выводы обеих катушек.
  6. Установите пластины сердечника.

Испытание

Для проверки работоспособности П-образных или тороидальных трансформаторов в домашних условиях можно воспользоваться обычным мультиметром. Для этого переведите измерительный прибор в режим прозвона и проверьте целостность каждой из обмоток. Затем  проверьте изоляцию между каждой из обмоток и магнитопроводом и сопротивление между обеими обмотками. Это наиболее простой комплекс испытаний, который даст общее представление об исправности самодельного агрегата.

Для проверки отсутствия короткозамкнутых витков используется лампа, включающаяся последовательно к первичной обмотке.

Помимо этого электрические машины испытываются в режиме холостого хода и короткого замыкания. Такие проверки показывают, насколько качественно собран преобразователь, но выполнять их в домашних условиях не обязательно.

🔥 КАК НАМОТАТЬ ТРАНСФОРМАТОР ПОД ДРУГОЙ ВОЛЬТАЖ своими руками


Watch this video on YouTube

Список использованной литературы

  • Подъяпольский А.Н. «Как намотать трансформатор» 1953
  • Кислицын А.Л. «Трансформаторы» 2001
  • Родштейн Л.П. «Электрические аппараты» 1989
  • Бартош А.И. «Электрика для любознательных» 2019

Как работают трансформаторы | Проекты самодельных схем

Согласно определению, данному в Википедии, электрический трансформатор - это стационарное оборудование, которое обменивается электроэнергией между парой тесно намотанных катушек посредством магнитной индукции.

Постоянно меняющийся ток в одной обмотке трансформатора генерирует переменный магнитный поток, который, следовательно, индуцирует переменную электродвижущую силу на второй катушке, построенной на том же сердечнике.

Основной принцип работы

Трансформаторы в основном работают путем передачи электроэнергии между парой катушек посредством взаимной индукции, вне зависимости от какой-либо формы прямого контакта между двумя обмотками.

Этот процесс передачи электричества посредством индукции был впервые доказан законом индукции Фарадея в 1831 году. В соответствии с этим законом индуцированное напряжение на двух катушках создается из-за переменного магнитного потока, окружающего катушку.

Основная функция трансформатора - повышать или понижать переменное напряжение / ток в различных пропорциях в соответствии с требованиями приложения. Пропорции определяются числом витков и соотношением витков обмотки.

Анализ идеального трансформатора

Мы можем представить себе идеальный трансформатор в виде гипотетической конструкции, которая может быть практически без потерь в какой-либо форме. Более того, в этой идеальной конструкции первичная и вторичная обмотки могут быть идеально соединены друг с другом.

Это означает, что магнитная связь между двумя обмотками осуществляется через сердечник с бесконечной магнитной проницаемостью и с индуктивностями обмотки при общей нулевой магнитодвижущей силе.

Мы знаем, что в трансформаторе приложенный переменный ток в первичной обмотке пытается создать переменный магнитный поток внутри сердечника трансформатора, который также включает в себя вторичную обмотку, окруженную вокруг него.

Из-за этого переменного потока во вторичной обмотке индуцируется электродвижущая сила (ЭДС) посредством электромагнитной индукции. Это приводит к генерации потока во вторичной обмотке с величиной, противоположной, но равной потоку в первичной обмотке, согласно закону Ленца.

Поскольку сердечник обладает бесконечной магнитной проницаемостью, весь (100%) магнитный поток может передаваться через две обмотки.

Это означает, что, когда первичная обмотка подвергается воздействию источника переменного тока, а нагрузка подключена к клеммам вторичной обмотки, ток течет через соответствующую обмотку в направлениях, указанных на следующей схеме.В этом состоянии магнитодвижущая сила сердечника нейтрализуется до нуля.

Изображение предоставлено: https://commons.wikimedia.org/wiki/File:Transformer3d_col3.svg

В этой идеальной конструкции трансформатора, поскольку передача потока через первичную и вторичную обмотки составляет 100%, согласно закону Фарадея. индуцированное напряжение на каждой обмотке будет полностью пропорционально количеству витков обмотки, как показано на следующем рисунке:

Тестовое видео, подтверждающее линейное соотношение между первичным / вторичным соотношением витков.

ОБОРОТЫ И ОТНОШЕНИЯ НАПРЯЖЕНИЙ

Попробуем подробно разобраться в расчетах коэффициента трансформации:

Чистая величина напряжения, индуцированного от первичной обмотки ко вторичной, просто определяется соотношением количества витков намотаны на первичный и вторичный участки.

Однако это правило применяется только в том случае, если трансформатор близок к идеальному трансформатору.

Идеальный трансформатор - это тот трансформатор, который имеет незначительные потери в виде скин-эффекта или вихревых токов.

Давайте возьмем пример на рисунке 1 ниже (для идеального трансформатора).

Предположим, что первичная обмотка состоит примерно из 10 витков, а вторичная - только из одного витка. Из-за электромагнитной индукции силовые линии, генерируемые поперек первичной обмотки в ответ на входной переменный ток, попеременно расширяются и сжимаются, прорезая 10 витков первичной обмотки. Это приводит к тому, что во вторичной обмотке индуцируется точно пропорциональная величина напряжения в зависимости от отношения витков.

Обмотка, на которую подается переменный ток, становится первичной обмоткой, а дополнительная обмотка, которая производит выходной сигнал за счет магнитной индукции первичной обмотки, становится вторичной обмоткой.

Рисунок (1)

Поскольку вторичная обмотка имеет только один виток, она испытывает пропорциональный магнитный поток на одном витке по сравнению с 10 витками первичной обмотки.

Следовательно, поскольку напряжение, приложенное к первичной обмотке, равно 12 В, каждая ее обмотка будет подвергаться воздействию противо-ЭДС 12/10 = 1.2 В, и это именно та величина напряжения, которая будет влиять на одиночный виток, присутствующий во вторичной части. Это потому, что он имеет одну обмотку, которая способна извлекать только то же эквивалентное количество индукции, которое может быть доступно через один виток первичной обмотки.

Таким образом, вторичная обмотка с одним витком сможет извлечь 1,2 В из первичной обмотки.

Приведенное выше объяснение показывает, что количество витков на первичной обмотке трансформатора линейно соответствует напряжению питания на ней, а напряжение просто делится на количество витков.

Таким образом, в приведенном выше случае, поскольку напряжение составляет 12 В, а количество витков равно 10, суммарная ЭДС счетчика, наведенная на каждый из витков, будет 12/10 = 1,2 В

Пример № 2

Теперь давайте визуализируем рисунок 2 ниже, он показывает конфигурацию, аналогичную рисунку 1. ожидайте вторичный, у которого теперь есть 1 дополнительный ход, то есть 2 числа ходов.

Излишне говорить, что теперь вторичная обмотка будет проходить через вдвое больше линий потока по сравнению с условием на фигуре 1, в котором был только один виток.

Итак, здесь вторичная обмотка будет показывать около 12/10 x 2 = 2,4 В, потому что на два витка будет влиять величина противо-ЭДС, которая может быть эквивалентной для двух обмоток на первичной стороне трафарета.

Таким образом, из приведенного выше обсуждения в целом можно сделать вывод, что в трансформаторе соотношение между напряжением и числом витков на первичной и вторичной обмотках является достаточно линейным и пропорциональным.

Число витков трансформатора

Таким образом, полученная формула для расчета числа витков для любого трансформатора может быть выражена как:

Es / Ep = Ns / Np

где,

  • Es = вторичное напряжение ,
  • Ep = первичное напряжение,
  • Ns = количество вторичных витков,
  • Np = количество первичных витков.

Первичный вторичный коэффициент передачи

Было бы интересно отметить, что приведенная выше формула указывает прямую связь между отношением вторичного напряжения к первичному и вторичным к первичному количеству витков, которые указаны как пропорциональные и равный.

Следовательно, приведенное выше уравнение может быть также выражено как:

Ep x Ns = Es x Np

Далее мы можем вывести приведенную выше формулу для решения Es и Ep, как показано ниже:

Es = (Ep x Ns) / Np

аналогично,

Ep = (Es x Np) / Ns

Приведенное выше уравнение показывает, что если доступны любые 3 величины, четвертую величину можно легко определить, решив формулу .

Решение практических проблем с обмоткой трансформатора

Пример №1: Трансформатор имеет 200 витков в первичной части, 50 витков во вторичной и 120 вольт, подключенных к первичной обмотке (Ep). Какое может быть напряжение на вторичной обмотке (E s)?

Дано:

  • Np = 200 витков
  • Ns = 50 витков
  • Ep = 120 вольт
  • Es =? вольт

Ответ:

Es = EpNs / Np

Замена:

Es = (120 В x 50 витков) / 200 витков

Es = 30 вольт

Случай в точке # 2 : Предположим, у нас есть 400 витков проволоки в катушке с железным сердечником.

Предполагая, что катушка должна использоваться в качестве первичной обмотки трансформатора, рассчитайте количество витков, которые необходимо намотать на катушку, чтобы получить вторичную обмотку трансформатора, чтобы обеспечить вторичное напряжение в один вольт в зависимости от ситуации. где первичное напряжение 5 вольт?

Дано:

  • Np = 400 оборотов
  • Ep = 5 вольт
  • Es = 1 вольт
  • Ns =? оборотов

Ответ:

EpNs = EsNp

Транспонирование для Ns:

Ns = EsNp / Ep

Замена:

Ns = (1V x 900 витков)

Нс = 80 витков

Имейте в виду: Отношение напряжения (5: 1) эквивалентно соотношению обмоток (400: 80).Иногда вместо определенных значений вам назначают коэффициент витков или напряжений.

В подобных случаях вы можете просто принять любое произвольное число для одного из напряжений (или обмотки) и вычислить другое альтернативное значение из соотношения.

В качестве иллюстрации предположим, что коэффициент намотки задан как 6: 1, вы можете представить количество витков для первичной части и вычислить эквивалентное вторичное число витков, используя аналогичные пропорции, такие как 60:10, 36: 6, 30: 5 и т. Д.

Трансформатор во всех приведенных выше примерах имеет меньшее количество витков во вторичной части по сравнению с первичной частью. По этой причине вы можете обнаружить меньшее напряжение на вторичной стороне трафо, а не на первичной стороне.

Что такое повышающий и понижающий трансформаторы

Трансформатор, номинальное напряжение вторичной стороны которого ниже номинального напряжения первичной стороны, называется СТУПЕНЧАТЫМ трансформатором.

Или, в качестве альтернативы, если вход переменного тока подается на обмотку с большим числом витков, то трансформатор действует как понижающий трансформатор.

Соотношение понижающего трансформатора четыре: один записано как 4: 1. Трансформатор, который включает в себя меньшее количество витков на первичной стороне по сравнению с вторичной стороной, будет генерировать более высокое напряжение на вторичной стороне по сравнению с напряжением, подключенным к первичной стороне.

Трансформатор, у которого вторичная сторона номинала выше напряжения на первичной стороне, называется СТУПЕНЧАТЫМ трансформатором. Или, в качестве альтернативы, если вход переменного тока подается на обмотку с меньшим количеством витков, трансформатор действует как повышающий трансформатор.

Передаточное отношение повышающего трансформатора «один к четырем» должно быть записано как 1: 4. Как вы можете видеть в двух соотношениях, величина первичной обмотки последовательно упоминается в начале.

Можем ли мы использовать понижающий трансформатор в качестве повышающего трансформатора и наоборот?

Да, безусловно! Все трансформаторы работают по тому же основному принципу, что и описанный выше. Использование повышающего трансформатора в качестве понижающего трансформатора просто означает переключение входных напряжений на их первичную / вторичную обмотку.

Например, если у вас есть обычный повышающий трансформатор источника питания, который обеспечивает выходное напряжение 12-0-12 В от входного переменного тока 220 В, вы можете использовать тот же трансформатор в качестве повышающего трансформатора для получения выходного сигнала 220 В от источника переменного тока. Вход 12 В переменного тока.

Классический пример - схема инвертора, где в трансформаторах нет ничего особенного. Все они работают от обычных понижающих трансформаторов, подключенных противоположным образом.

Воздействие нагрузки

Когда нагрузка или электрическое устройство подключаются к вторичной обмотке трансформатора, ток или токи проходят через вторичную сторону обмотки вместе с нагрузкой.

Магнитный поток, создаваемый током во вторичной обмотке, взаимодействует с магнитными линиями потока, создаваемыми усилителями на первичной стороне. Этот конфликт между двумя линиями магнитного потока возникает в результате общей индуктивности между первичной и вторичной обмотками.

Mutual Flux

Абсолютный магнитный поток в материале сердечника трансформатора преобладает как для первичной, так и для вторичной обмоток. Кроме того, это путь, по которому электроэнергия может перемещаться от первичной обмотки ко вторичной.

Из-за того, что этот поток объединяет обе обмотки, явление обычно известно как ВЗАИМНЫЙ ПОТОК. Кроме того, индуктивность, которая создает этот поток, преобладает для обеих обмоток и называется взаимной индуктивностью.

На рисунке (2) ниже показан поток, создаваемый токами в первичной и вторичной обмотке трансформатора каждый раз, когда в первичной обмотке включается ток питания.

.

повышающие и понижающие трансформаторы | Трансформеры

  • Сетевые сайты:
    • Последний
    • Новости
    • Технические статьи
    • Последний
    • Проектов
    • Образование
    • Последний
    • Новости
    • Технические статьи
    • Обзор рынка
    • Образование
    • Последний
    • Новости
    • Мнение
    • Интервью
    • Особенности продукта
    • Исследования
    • Форумы
  • Авторизоваться
  • Присоединиться
    • Авторизоваться
    • Присоединиться к AAC
    • Или войдите с помощью

      • Facebook
      • Google

0:00 / 0:00

  • Подкаст
  • Последний
  • Подписывайся
    • Google
    • Spotify
.

Разница между повышающим и понижающим трансформатором

Трансформатор - это статическое устройство, которое передает электрическую мощность переменного тока от одной цепи к другой с той же частотой, но уровень напряжения обычно изменяется. По экономическим причинам электрическая энергия должна передаваться при высоком напряжении, тогда как с точки зрения безопасности она должна использоваться при низком напряжении. Это увеличение напряжения для передачи и уменьшение напряжения для использования может быть достигнуто только с помощью повышающего и понижающего трансформатора.

Основное различие между повышающим и понижающим трансформатором состоит в том, что повышающий трансформатор повышает выходное напряжение, а понижающий трансформатор снижает выходное напряжение. Некоторые другие различия объясняются ниже в виде сравнительной таблицы с учетом факторов: напряжение, обмотка, количество витков, толщина проводника и область применения.

Содержание: Повышающий против понижающего трансформатора

  1. Таблица сравнения
  2. Определение
  3. Ключевые отличия
  4. Запомните

Таблица сравнения

ОСНОВА ДЛЯ СРАВНЕНИЯ СТУПЕНЧАТЫЙ
ТРАНСФОРМАТОР
СТУПЕНЧАТЫЙ
ТРАНСФОРМАТОР
Определение Повышающий трансформатор увеличивает выходное напряжение. Понижающий трансформатор снижает выходное напряжение.
Напряжение Входное напряжение низкое, а выходное напряжение высокое. Входное напряжение высокое, а выходное напряжение низкое.
Обмотка Обмотка высокого напряжения - вторичная обмотка. Обмотка высокого напряжения - первичная обмотка.
Ток Низкий ток вторичной обмотки. Большой ток во вторичной обмотке.
Номинальное выходное напряжение 11000 В или выше 110 В, 24 В, 20 В, 10 В и т. Д.
Размер жилы Первичная обмотка изготовлена ​​из толстой изолированной медной проволоки. Вторичная обмотка выполнена из толстой изолированной медной проволоки
Применение Электростанция, рентгеновский аппарат, микроволновые печи и т. Д. Дверной звонок, преобразователь напряжения и т. Д.

Определение повышающего трансформатора:

Когда напряжение на выходе повышается, трансформатор называется повышающим трансформатором.В этом трансформаторе количество витков во вторичной обмотке всегда больше, чем количество витков в первичной обмотке, поскольку на вторичной стороне трансформатора создается высокое напряжение.

В таких странах, как Индия, обычно электроэнергия вырабатывается на 11 кВ. По экономическим причинам мощность переменного тока передается при очень высоких напряжениях (220-440 В) на большие расстояния. Поэтому на генерирующей станции применяется повышающий трансформатор.

Определение понижающего трансформатора:

Понижающий трансформатор снижает выходное напряжение или, другими словами, преобразует мощность высокого напряжения с низким током в мощность с низким напряжением и высоким током.Например, в нашей силовой цепи 230–110 В, а для дверного звонка - только 16 В. Итак, нужно использовать понижающий трансформатор для понижения напряжения с 110 В или 220 В до 16 В.

Для питания различных зон из соображений безопасности напряжение понижено до 440/230 В. Таким образом, количество витков на вторичной обмотке меньше, чем на первичной; меньшее напряжение индуцируется на выходе (вторичной обмотке) трансформатора.

Ключевые различия между повышающим трансформатором и понижающим трансформатором

  • Когда выходное (вторичное) напряжение больше, чем его входное (первичное) напряжение, оно называется повышающим трансформатором, тогда как в понижающем трансформаторе выходное (вторичное) напряжение меньше.
  • В повышающем трансформаторе обмотка низкого напряжения является первичной обмоткой, а обмотка высокого напряжения - вторичной обмоткой, тогда как в понижающем трансформаторе обмотка низкого напряжения является вторичной обмоткой.
  • В повышающем трансформаторе ток и магнитное поле менее развиты во вторичной обмотке и сильно развиты в первичной обмотке, тогда как в понижающем трансформаторе напряжение на вторичной обмотке низкое. магнитное поле высокое.
    • Примечание 1 : Ток прямо пропорционален магнитному полю.
    • Note2 : Согласно законам Ома, напряжение прямо пропорционально току. Если мы увеличиваем напряжение, то ток также увеличивается. Но в трансформаторе для передачи того же количества мощности, если мы увеличиваем напряжение, ток будет уменьшаться и наоборот. Таким образом, мощность на передающем и приемном концах трансформатора остается неизменной.
  • В повышающем трансформаторе первичная обмотка состоит из толстого изолированного медного провода, а вторичная - из тонкого изолированного медного провода, тогда как в понижающем трансформаторе выходной ток велик, поэтому толстый изолированный медный провод проволока используется для изготовления вторичной обмотки.
    • Примечание : Толщина проволоки зависит от силы тока, протекающего через них.
  • Повышающий трансформатор увеличивает напряжение от 220 В до 11 кВ или выше, тогда как понижающий трансформатор снижает напряжение с 440–220 В, 220–110 В или 110–24 В, 20 В, 10 Вольт.

Что следует помнить:

Тот же трансформатор может использоваться как повышающий или понижающий трансформатор. Это зависит от того, каким образом он включен в цепь. Если питание подается на обмотку низкого напряжения, она становится повышающим трансформатором.В качестве альтернативы, если питание подается на обмотку высокого напряжения, трансформатор становится понижающим.

.

Смотрите также