Вход на сайт

Зарегистрировавшись на сайте Вы сможете добавлять свои материалы






Самодельный импульсный блок питания на tl494 полумост


cxema.org - Мощный стабилизатор тока и напряжения на TL494

Мощный стабилизатор тока и напряжения на TL494

Этот стабилизатор обладает неплохими характеристиками, имеет плавную регулировку тока и напряжения, хорошую стабилизацию, без проблем терпит короткие замыкания, относительно простой и не требует больших финансовых затрат.  Он обладает высоким кпд за счет импульсного принципа работы, выходной ток может доходить до 15 ампер, что позволит построить мощное зарядное устройство и блок питания с регулировкой тока и напряжения. При желании можно увеличить выходной ток до 20-и и более ампер.

В интернете подобных устройств, каждое имеет свои достоинства и недостатки, но принцип работы у них одинаковый. Предлагаемый вариант - это попытка создания простого и достаточно мощного стабилизатора.

За счет применения полевых ключей удалось значительно увеличить нагрузочную способность источника и снизить нагрев на силовых ключах. При выходном токе  до 4-х ампер транзисторы и силовой диод можно не устанавливать на радиаторы.

Номиналы некоторых компонентов на схеме могут отличаться от номиналов на плате, т.к. плату разрабатывал для своих нужд.

Диапазон регулировки выходного напряжения от 2-х до 28 вольт, в моем случае максимальное напряжение 22 вольта, т.к. я использовал низковольтные ключи и поднять напряжение выше этого значения было рискованно, а так при входном напряжении около 30 Вольт, на выходе спокойно можно получить до 28-и Вольт.  Диапазон регулировки выходного тока от 60mA до 15A Ампер, зависит от сопротивления датчика тока и силовых элементов схемы.

Устройство не боится коротких замыканий, просто сработает ограничение тока.

Собран источник на базе ШИМ контроллера TL494, выход микросхемы дополнен драйвером для управления силовыми ключами.

Хочу обратить ваше внимание на батарею конденсаторов установленных на выходе. Следует использовать конденсаторы с низким внутренним сопротивлением на 40-50 вольт, с суммарной емкостью от 3000 до 5000мкФ.

Нагрузочный резистор на выходе применен для быстрого разряда выходных конденсаторов, без него измерительный вольтметр на выходе будет работать с запаздыванием, т.к. при уменьшении выходного напряжения конденсаторам нужно время, для разрядки, а этот резистор быстро их разрядит. Сопротивление этого резистора нужно пересчитать, если на вход схемы подается напряжение больше 24-х вольт. Резистор двух ваттный, рассчитан с запасом по мощности, в ходе работы может греться, это нормально.

Как это работает:

ШИМ контроллер формирует управляющие импульсы для силовых ключей. При наличии управляющего импульса транзистор,  и питание по открытому каналу транзистора через дроссель поступает на накопительный конденсатор. Не забываем, что дроссель является индуктивной нагрузкой, которым свойственно накапливание энергии и отдача за счет самоиндукции. Когда транзистор закрывается накопленный в дросселе заряд через диод шоттки продолжит подпитывать нагрузку. Диод в данном случае откроется, т.к. напряжение с дросселя имеет обратную полярность. Этот процесс будет повторяться десятки тысяч раз в секунду, в зависимости от рабочей частоты микросхемы ШИМ. По факту ШИМ контроллер всегда отслеживает напряжение на выходном конденсаторе.

Стабилизация выходного напряжения происходит следующим образом. На неинвертирующий вход первого усилителя ошибки микросхемы (вывод 1) поступает выходное напряжение стабилизатора, где оно сравнивается с опорным напряжением, которое присутствует на инверсном входе усилителя ошибки. При снижении выходного напряжения будет снижаться и напряжение на выводе 1, и если оно будет меньше опорного напряжения, ШИМ контроллер будет увеличивать длительности импульсов, следовательно транзисторы больше времени будут находиться в открытом состоянии и больше тока будет накачиваться в дроссель, если же выходное напряжение больше опорного, произойдет обратное - микросхема уменьшит длительность управляющих импульсов. Указанным делителем можно принудительно менять напряжение на неинвертирующщем входе усилителя ошибки, этим увеличивая или уменьшая выходное напряжение стабилизатора в целом. Для наиболее точной регулировки напряжения применён подстроечный многооборотный резистор, хотя можно использовать обычный.

Минимальное выходное напряжение составляет порядка 2 вольт, задается указанным делителем, при желании можно поиграться с сопротивлением резисторов для получения приемлемых для вас значений, не советуется снижать минимальное напряжение ниже 1 вольта.

Для отслеживания потребляемого нагрузкой тока установлен шунт. Для организации функции ограничения тока задействован второй усилитель ошибки в составе ШИМ контроллера тл494. Падение напряжения на шунте поступает на неинвертирующий вход второго усилителя ошибки, опять сравнивается с опорным, а дальше происходит точно тоже самое, что и в случае стабилизации напряжения. Указанным резистором можно регулировать выходной ток.

Токовый шунт изготовлен из двух параллельно соединённых низкоомных резисторов с сопротивлением 0,05Ом.

Накопительный дроссель намотан на желто белом кольце от фильтра групповой стабилизации компьютерного блока питания.

Так как схема планировалась на довольно большой входной ток, целесообразно использовать два сложенных вместе кольца. Обмотка дросселя содержит 20 витков  намотанных двумя жилами провода диаметром 1,25мм в лаковой изоляции, индуктивность около 80-90 микрогенри.

Диод желательно использовать с барьером Шоттки и обратным напряжением 100-200 вольт, в моем случае применена мощная диодная сборка MBR4060 на 60 вольт 40 Ампер.

Силовые ключи вместе с диодом устанавливают на общий радиатор, притом изолировать подложки компонентов от радиатора не нужно, т.к. они общие.

Подробное описание и испытания блока можно посмотреть в видео

Печатная плата тут 

Инвертор

PWM с использованием схемы IC TL494

Очень простая, но очень сложная модифицированная схема синусоидального инвертора представлена ​​в следующем посте. Использование микросхемы PWM IC TL494 не только делает конструкцию чрезвычайно экономичной с учетом количества деталей, но также очень эффективной и точной.

Использование TL494 для проектирования

Микросхема TL494 - это специализированная ИС с ШИМ, которая идеально подходит для всех типов схем, требующих точных выходов на основе ШИМ.

Чип имеет все необходимые встроенные функции для генерации точных ШИМ, которые можно настраивать в соответствии со спецификациями приложений пользователя.

Здесь мы обсуждаем универсальную схему модифицированного синусоидального инвертора на основе ШИМ, которая включает в себя IC TL494 для необходимой расширенной обработки ШИМ.

Ссылаясь на рисунок выше, различные функции выводов ИС для реализации операций инвертора ШИМ можно понять с помощью следующих пунктов:

Назначение контактов ИС TL494

Контакт № 10 и контакт № 9 являются двумя выходами. ИС, которые скомпонованы для работы в тандеме или в конфигурации с тотемным полюсом, что означает, что оба вывода никогда не станут положительными вместе, а будут колебаться поочередно от положительного до нулевого напряжения, то есть, когда вывод № 10 положительный, вывод № 9 будет читать ноль вольт и наоборот.

Микросхема включена для получения вышеуказанного тотема выхода, связывая штифт # 13 с контактом # 14, который является опорным напряжением выходного контактом множества IC при + 5V.

Таким образом, до тех пор, пока контакт № 13 оснащен этим опорным напряжением +5 В, он позволяет ИС производить поочередно переключаемые выходы, однако, если контакт № 13 заземлен, выходы ИС вынуждены переключаться в параллельный режим (несимметричный режим. ), что означает, что оба выхода pin10 / 9 начнут переключаться вместе, а не поочередно.

Вывод 12 микросхемы - это вывод питания микросхемы, который можно увидеть подключенным к батарее через падающие резисторы на 10 Ом, которые отфильтровывают любые возможные всплески или выбросы при включении для ИС.

Контакт № 7 является основным заземлением ИС, в то время как контакт № 4 и контакт № 16 заземлены для определенных целей.

Контакт № 4 - это код неисправности или вывод управления мертвым временем IC, который определяет мертвое время или промежуток между периодами включения двух выходов IC.

По умолчанию он должен быть подключен к земле, чтобы ИС генерировала минимальный период «мертвого времени», однако для достижения более высоких периодов мертвого времени на эту распиновку можно подавать внешнее переменное напряжение от 0 до 3.3 В, что обеспечивает линейно регулируемое мертвое время от 0 до 100%.

Контакты №5 и №6 - это выводы частоты ИС, которые должны быть подключены к внешней сети Rt, Ct (резистор, конденсатор) для установки необходимой частоты на выходных выводах ИС.

Любой из них может быть изменен для регулировки требуемой частоты, в предлагаемой схеме инвертора с измененной ШИМ мы используем переменный резистор для его включения. Он может быть отрегулирован для достижения частоты 50 Гц или 60 Гц на контактах 9/10 ИС в соответствии с требованиями пользователя.

IC TL 494 имеет сеть с двумя операционными усилителями, внутренне настроенную как усилители ошибок, которые предназначены для коррекции и измерения рабочих циклов переключения выходов или ШИМ в соответствии со спецификациями приложения, так что выход создает точные ШИМ и обеспечивает идеальное среднеквадратичное значение. кастомизация выходного каскада.

Функция усилителя ошибки

Входы усилителей ошибки сконфигурированы на контактах 15 и 16 для одного из усилителей ошибки и на контактах 1 и 2 для второго усилителя ошибки.

Обычно только один усилитель ошибки используется для автоматической настройки ШИМ, а другой усилитель ошибки остается бездействующим.

Как видно на схеме, усилитель ошибки с входами на контакте 15 и контакте 16 становится неактивным, если заземлить неинвертирующий контакт 16 и подключить инвертирующий контакт 15 к + 5 В с контактом 14.

Таким образом, внутренне усилитель ошибки, связанный с указанными выше контактами, остается неактивным.

Однако усилитель ошибки, имеющий контакты 1 и 2 в качестве входов, эффективно используется здесь для реализации коррекции ШИМ.

На рисунке показано, что pin1 которая является неинвертирующим входом усилителя ошибки подключена к 5V опорного штифту # 14, с помощью регулируемого делителя напряжения, используя горшок.

Инвертирующий вход соединен с контактом 3 (контактом обратной связи) ИС, который фактически является выходом усилителя ошибки, и позволяет формировать контур обратной связи для контакта 1 ИС.

Приведенная выше конфигурация контактов 1/2/3 позволяет точно настроить выходные ШИМ путем регулировки потенциометра контакта №1.

На этом завершается основное руководство по реализации выводов для обсуждаемого модифицированного синусоидального инвертора, использующего IC TL494.

Выходной силовой каскад инвертора

Теперь о выходном силовом каскаде мы можем визуализировать несколько используемых МОП-транзисторов, управляемых двухтактным каскадом BJT с буфером.

Ступень BJT обеспечивает идеальную платформу переключения для полевых транзисторов, обеспечивая минимальные проблемы паразитной индуктивности и быструю разрядку внутренней емкости полевых транзисторов. Последовательные резисторы затвора предотвращают любые переходные процессы, пытающиеся проникнуть в сеть, обеспечивая тем самым полную безопасность и эффективность операций.

Сливы mosfet подключены к силовому трансформатору, который может быть обычным трансформатором с железным сердечником, имеющим первичную конфигурацию 9-0-9 В, если батарея инвертора рассчитана на 12 В, а вторичная может быть на 220 В или 120 В в соответствии с потребителем. характеристики страны.

Мощность инвертора в основном определяется мощностью трансформатора и емкостью аккумуляторной батареи, эти параметры можно изменить по своему усмотрению.

Использование ферритового трансформатора

Для создания компактного синусоидального инвертора PWM трансформатор с железным сердечником можно заменить трансформатором с ферритовым сердечником.Детали обмотки для этого же можно увидеть ниже:

При использовании суперэмалированного медного провода:

Первичный: Ветер 5 x 5 витков, центральный отвод, используя 4 мм (две жилы 2 мм, намотанные параллельно)

Вторичный: Ветер 200 до 300 витков по 0,5 мм

Жила: любой подходящий сердечник EE, который может удобно разместить эту обмотку.

TL494 Схема полного моста инвертора

Следующая конструкция может использоваться для создания схемы полного моста или H-мостового инвертора с IC TL 494.

Как можно видеть, комбинация МОП-транзисторов с p-каналом и n-каналом используется для создания полной мостовой сети, что упрощает работу и позволяет избежать сложной сети начальных конденсаторов, которая обычно необходима для полных мостовых инверторов, имеющих только n канал MOSFET.

Однако включение МОП-транзисторов с p-каналом на высокой стороне и n-каналом на нижней стороне делает конструкцию склонной к проблеме сквозного прохождения.

Во избежание прострела необходимо обеспечить достаточное мертвое время с помощью IC TL 494 и, таким образом, предотвратить любую возможность такой ситуации.

Затворы IC 4093 используются для гарантии идеальной изоляции двух сторон полной проводимости моста и правильного переключения первичной обмотки трансформатора.

Результаты моделирования

О Swagatam

Я инженер-электронщик (dipIETE), любитель, изобретатель, разработчик схем / печатных плат, производитель. Я также являюсь основателем веб-сайта: https://www.homemade-circuits.com/, где я люблю делиться своими инновационными идеями и руководствами по схемам.
Если у вас есть какой-либо вопрос, связанный со схемой, вы можете взаимодействовать с ним через комментарии, я буду очень рад помочь!

.

Modified ATX Power Supply Half Bridge SMPS Project TL494 EI33

ATX SMPS полумостовая схема модифицированная версия выхода компьютерной схемы питания для высоковольтного силового трансформатора ei33-2 с симметричной перемоткой. Входное напряжение 300 Вт Входное напряжение 240 В переменного тока + - + 20 В - 45 В комплект .... Проекты электроники, модифицированный блок питания ATX Half Bridge SMPS Project TL494 EI33 "проекты силовой электроники, схемы smps, проекты smps, схема smps, tl494 circuit, " Дата 2019/08/02

ATX SMPS полумостовая схема модифицированная версия выхода компьютерной цепи питания для высоковольтного силового трансформатора ei33-2 симметричная перемотка.Входное напряжение 300 Вт. Выходное напряжение 240 В переменного тока + - + 20 В - 45 Вольт.

Схема усилителя большой мощности может использоваться для запуска дополнительной схемы контроля тембра в интегральных схемах стабилизатора положительного отрицательного напряжения предусилителя 7812 с выведенным напряжением 7912 + - 12 В

TL494 Схема SMPS модифицирована Блок питания ATX

мощность переключения Источники идеальны для питания усилителей звука. Представьте возможность регулирования вторичного и третичного выходного напряжения, а также дополнительные фиксированные выходы (+ -15 [В]) для питания фильтров, предусилителей и т. Д..
Использование переключаемых источников исключает необходимость в дорогостоящем, тяжелом и громоздком трансформаторе тока, а также в соответствующих этапах измельчения и фильтрации. Вся необходимая информация, схемы, печатные платы и т. Д. Находятся в соответствующих файлах.

Компактный источник питания SMPS: - Теоретическая выходная мощность: · ~ 250 [Вт], ядро ​​IE33-23-13 (типовой ATX). - Частотный драйвер: около 160 [кГц] - Регулируемое выходное напряжение от + -24 до + -42 [В] прибл. - Третичные выходы с фиксированным напряжением (+ -15 [В]).

Источник: forosdeelectronica.com Альтернативная ссылка на файлы печатной платы с модифицированной схемой ATX SMPS:

СПИСОК ССЫЛКИ ДЛЯ ЗАГРУЗКИ ФАЙЛОВ (в формате TXT): LINKS-9175.zip

.

Простейшая схема инвертора с полным мостом

Среди различных существующих топологий инвертора, топология инвертора с полным мостом или H-мостом считается наиболее эффективной и действенной. Конфигурирование полной мостовой топологии может повлечь за собой слишком большую критичность, однако с появлением интегральных схем с полным мостом они стали одними из самых простых инверторов, которые можно построить.

Что такое полномостовая топология

Полномостовой инвертор, также называемый H-мостовым инвертором, является наиболее эффективной топологией инвертора, в которой используются двухпроводные трансформаторы для подачи необходимого двухтактного колебательного тока в первичную обмотку.Это позволяет избежать использования трехпроводного трансформатора с ответвлениями, который не очень эффективен из-за того, что у них вдвое больше первичной обмотки, чем у двухпроводного трансформатора.

Эта функция позволяет использовать трансформаторы меньшего размера и получать большую выходную мощность при том же Сегодня из-за легкой доступности микросхем мостовых драйверов все стало предельно просто, и создание схемы полного мостового инвертора в домашних условиях стало детской забавой.

Здесь мы обсуждаем схему полного мостового инвертора с использованием микросхемы полного моста IRS2453 (1) D от International Rectifiers.

Упомянутая микросхема представляет собой выдающуюся интегральную схему драйвера полного моста, поскольку она в одиночку берет на себя все основные критические проблемы, связанные с топологиями H-мостов, благодаря своей усовершенствованной встроенной схеме.

Сборщику просто нужно подключить несколько компонентов извне, чтобы получить полноценный рабочий инвертор с H-мостом.

Простота конструкции очевидна из приведенной ниже схемы:

Работа схемы

Выводы 14 и 10 - это выводы плавающего напряжения питания высокой стороны ИС.Конденсаторы емкостью 1 мкФ эффективно поддерживают эти важные выводы в тени выше, чем напряжения стока соответствующих МОП-транзисторов, гарантируя, что потенциал истока МОП-транзисторов остается ниже, чем потенциал затвора для требуемой проводимости МОП-транзисторов.

Затворные резисторы подавляют возможность перенапряжения стока / истока, предотвращая внезапное срабатывание МОП-транзисторов.

Диоды на резисторах затвора вводятся для быстрой разрядки внутренних конденсаторов затвора / стока в периоды отсутствия проводимости для обеспечения оптимального отклика устройств.

Микросхема IRS2453 (1) D также имеет встроенный генератор, что означает, что для этой микросхемы не потребуется каскад внешнего генератора.

Всего пара внешних пассивных компонентов заботится о частоте для управления инвертором.

Rt и Ct могут быть рассчитаны для получения ожидаемых частотных выходов 50 Гц или 60 Гц через МОП-транзисторы.

Расчет компонентов, определяющих частоту

Для расчета значений Rt / Ct можно использовать следующую формулу:

f = 1/1.453 x Rt x Ct

, где Rt в Омах, а Ct в фарадах.

Функция высокого напряжения

Еще одной интересной особенностью этой ИС является ее способность работать с очень высокими напряжениями до 600 В, что делает ее идеальной для применения в бестрансформаторных инверторах или в схемах компактных ферритовых инверторов.

Как видно на данной диаграмме, если доступное извне 330 В постоянного тока подается через «выпрямленные линии +/- переменного тока», конфигурация мгновенно превращается в бестрансформаторный инвертор, в котором любая предполагаемая нагрузка может быть подключена непосредственно через точки, отмеченные как "нагрузка".

В качестве альтернативы, если используется обычный понижающий трансформатор, первичная обмотка может быть подключена через точки, отмеченные как «нагрузка». В этом случае «выпрямленная линия + AC» может быть соединена с контактом №1 ИС и подключена к аккумулятору (+) инвертора.

Если используется батарея с напряжением выше 15 В, «выпрямленная линия + переменного тока» должна быть подключена непосредственно к плюсу батареи, в то время как контакт № 1 должен быть подключен к пониженному регулируемому напряжению 12 В от источника батареи с использованием IC 7812.

Несмотря на то, что показанная ниже конструкция выглядит слишком простой в изготовлении, она требует соблюдения некоторых строгих правил. Вы можете обратиться к посту для обеспечения правильных мер защиты для предлагаемой простой схемы полного мостового инвертора.

ПРИМЕЧАНИЕ. Соедините вывод SD IC с линией заземления, если она не используется для операции выключения.

Принципиальная схема

Простой H-мостовой или полный мостовой инвертор с использованием двух полумостовых ИС IR2110

На приведенной выше диаграмме показано, как реализовать эффективную конструкцию полномостового инвертора прямоугольной формы с использованием пары полумостовых ИС IR2110 .

Микросхемы представляют собой полноценные полумостовые драйверы, оснащенные необходимой сетью загрузочных конденсаторов для управления МОП-транзисторами высокого напряжения и функцией мертвого времени для обеспечения 100% безопасности проводимости МОП-транзисторов.

ИС работают путем попеременного переключения МОП-транзисторов Q1 / Q2 и Q3 / Q4 в тандеме, так что в любом случае, когда Q1 включен, Q2 и Q3 полностью переключаются как OF, и наоборот.

Микросхема способна производить вышеуказанное точное переключение в ответ на синхронизированные сигналы на их входах HIN и LIN.

Эти четыре входа должны быть активированы, чтобы гарантировать, что в любой момент HIN1 и LIN2 включаются одновременно, а HIN2 и LIN1 выключены, и наоборот. Это делается с удвоенной скоростью на выходе инвертора. Это означает, что если требуется, чтобы выход инвертора составлял 50 Гц, входы HIN / LIN должны генерироваться с частотой 100 Гц и так далее.

Схема генератора

Это схема генератора, оптимизированная для запуска входов HIN / LIN описанной выше схемы полного моста инвертора.

Одна ИС 4049 используется для генерации необходимой частоты, а также для изоляции переменных входных каналов для ИС инвертора.

C1 и R1 определяют частоту, необходимую для генерации полумостовых устройств, и могут быть рассчитаны по следующей формуле:

f = 1 / 1,2RC

В качестве альтернативы, значения могут быть получены методом проб и ошибок.

Дискретный полномостовой инвертор на транзисторе

До сих пор мы изучали топологии полномостового инвертора с использованием специализированных ИС, однако то же самое можно было бы построить с использованием дискретных частей, таких как транзисторы и конденсаторы, и независимо от ИС.

Простую схему можно увидеть ниже:

О Swagatam

Я инженер-электронщик (dipIETE), любитель, изобретатель, разработчик схем / печатных плат, производитель. Я также являюсь основателем веб-сайта: https://www.homemade-circuits.com/, где я люблю делиться своими инновационными идеями и руководствами по схемам.
Если у вас есть какие-либо вопросы, связанные со схемой, вы можете взаимодействовать с ними через комментарии, я буду очень рад помочь!

.

Модификация китайского блока питания для обеспечения переменного напряжения

Конечный результат: Максимальный выходной ток 33 А, регулируемый от 4,8 В до 15 В

Наличие источника питания 7,5 В

После того, как эта страница была размещена на Hackaday, один из комментаторов заметил, что 7,5 В на самом деле является стандартным напряжением источника питания! Я никогда этого не знал, поэтому искал только источники питания на 5 В, 12 В, 24 В. Конечно, их много 7.5V питает вокруг - например TRC Electronics. Кроме того, у большинства из них будет регулировка ± 5%, поэтому для исходного приложения, которое требовало 7,4 В, я мог бы просто использовать вместо него стандартный источник питания.

Важное примечание

Почти все китайские источники питания этого типа, с которыми мне приходилось сталкиваться, имели очень плохие радиаторы различных силовых полупроводников - транзисторов, диодов и т. Д. Для обеспечения хорошего теплового контакта с металлическим корпусом уделяется мало внимания, поэтому я всегда снимаю вниз, проверьте установку радиаторов и нанесите дополнительную термопасту.

Кроме того, некоторые гусеницы в этом источнике имеют недостаточный путь утечки / зазор - подробности см. В красном разделе ниже по странице.

Введение

В настоящее время я работаю над продуктом, в котором используется бесщеточный двигатель «hobby» размера 2430 и электронный регулятор скорости (ESC) на 25A. В «предполагаемом» использовании контроллер работает от двух литий-ионных батарей с общим напряжением около 7,4 В, но вместо этого я хочу использовать его от источника питания от сети. Однако готовых источников питания с таким выходным напряжением нет.

К счастью, нет недостатка в недорогих китайских импульсных источниках питания со стандартными выходами 5,12,24 В и т. Д. Большинство (все?) Из них имеют возможность слегка регулировать выходное напряжение, примерно на ± 10%. Я считал, что можно будет модифицировать такой источник питания, чтобы обеспечить полностью регулируемое выходное напряжение, которое можно было бы установить на желаемое значение 7,4 В. Это ни в коем случае не новаторская идея - многие люди модифицировали источники питания (обычная модификация заключается в увеличении выхода до 13,8 В для использования радиолюбителей), но я не видел хорошего оперативного анализа этих источников питания, так что это хороший повод поработать детективом и выяснить, что им движет.

Поставка

Схема нумерации моделей для этих источников питания выглядит как S-AAA-BB, где AAA - номинальная мощность в ваттах, а BB - выходное напряжение. Для этого приложения я использовал блок питания S-400-12 (400 Вт, 12 В, 33 А). Вот он:

Вот копия исходного списка на EBay. Это было очень дешево - на самом деле меньше, чем у некоторых доступных расходных материалов на 360 Вт! Из-за относительно высокой номинальной мощности у него есть охлаждающий вентилятор, который включается, когда температура источника питания (измеренная с помощью термовыключателя, размещенного внутри индуктора выходного фильтра) поднимается выше определенной точки.

Обратный инжиниринг печатной платы

Первая задача - достать основную печатную плату, отсканировать / сфотографировать, отследить и нарисовать схему. Моя процедура была примерно такой (вся обработка производилась в Photoshop):

  1. Отсканируйте нижнюю сторону (дорожки) и вставьте в фотошоп.
  2. На новом слое нарисуйте белые точки над каждой контактной площадкой / переходным отверстием / отверстием. Это поможет как выровнять детали позже, так и создать красивое изображение.
  3. Сфотографируйте верхнюю сторону (компоненты).Я сфотографировал доску в четырех четвертях и собрал их в Photoshop, чтобы попытаться получить «плоский» вид доски. Белые точки, сделанные на шаге 2, очень помогают выровнять четыре изображения.
  4. Используя инструменты пути, обведите каждую из нижних дорожек.
  5. Используйте пути в качестве областей выбора для заполнения дорожек на отдельном слое - используйте цвета для обозначения основных дорожек, таких как заземление постоянного тока, выход постоянного тока, положительный и отрицательный высоковольтные линии и т. Д.
  6. Просмотрите каждый компонент и проследите, посмотрите, к чему они подключены, и начните заполнять все это схемой.После того, как вы полностью закончите работу с каждым компонентом или дорожкой, сотрите их в фотошопе (или просто нарисуйте на отдельном слое белым цветом), чтобы вы могли сосредоточиться на том, что еще не было отслежено.
  7. Используйте много догадок и артистизма, чтобы создать красивую принципиальную схему!

Вот изображения печатной платы в высоком разрешении:

Важное примечание по пути утечки / зазору: Внимательный читатель (RW) указал на недостаточную длину пути утечки / зазора между несколькими дорожками на печатной плате.Речь идет о дорожках [катод ZD2 / коллектор Q3 / TR1] и [верхние концы R5 / R6 / R7]. Расположение и возможное решение выделено на изображении ниже (дорожки видны сверху, просматриваются «сквозь» печатную плату). Он находится справа от L-образного паза под TR1.

Расстояние между дорожками составляет всего около 1,5 мм, что намного меньше безопасного значения (см. Эти таблицы расстояний утечки / зазоров). Как показано, простым решением было бы удалить часть дорожки и повторно подключить ее с помощью перемычки.В идеале, слот тоже нужно расширить, но для этого может не хватить места.

В заключение, если вы цените свою безопасность, всегда стоит проверять наличие проблем утечки / зазоров в блоке питания и предпринимать попытки их исправить!

И то, чего вы все ждали, полную схему (щелкните изображение, чтобы перейти к PDF-файлу). Схема Eagle также доступна здесь.

Я также снял два трансформатора и измерил их свойства (индуктивность, фазировку, коэффициенты, сопротивление) - щелкните ниже, чтобы увидеть PDF:

Это довольно стандартная поставка - полумостовая топология с одной микросхемой ШИМ-контроллера TL494, на которой все работает.Изоляция обеспечивается трансформатором основного привода, поэтому нет необходимости в обратной связи оптопары.

Я рассмотрю каждый основной участок схемы и попытаюсь описать ее работу. Некоторые разделы соответствуют пунктирным прямоугольникам на принципиальной схеме, другие - нет!

Входной фильтр и питание ВН

Это довольно стандартная схема. Предохранитель, синфазный дроссель, фильтрующие конденсаторы для блокировки / поглощения любых ВЧ-помех, двухполупериодный мостовой выпрямитель и два сглаживающих конденсатора.Обратите внимание, что C2 и C3 включены последовательно - это значит, что средняя точка может использоваться как напряжение на половине полного напряжения питания. Один конец первичной обмотки трансформатора идет сюда, другой конец переключается между 0 В и полным напряжением питания, поэтому первичная обмотка видит ± половина полного напряжения питания.

SW1 - это переключатель для выбора режима работы 110/230 В. При работе на 230 В переключатель разомкнут, и напряжение на C2 + C3 является пиковым входным напряжением переменного тока. При работе на 110 В переключатель замкнут, и мост + два конденсатора действуют как удвоитель напряжения, поэтому общее напряжение на C2 + C3 теперь составляет удвоенных пикового входного напряжения переменного тока.

Мостовые транзисторы + базовый привод + главный трансформатор

(TR1 - это трансформатор основного привода, иногда я также называл его "затворным" трансформатором. TR2 - главный трансформатор.)

Два мостовых транзистора (Q4 и Q1) переключают один конец первичной обмотки трансформатора между 0 В и полным напряжением питания постоянного тока. Здесь творится очень хитрый трюк, который я едва понимаю. Во-первых, дополнительные резисторы, такие как R14, R13, R8, R4, слегка смещают основные транзисторы во время запуска (имейте в виду, что вспомогательный источник питания недоступен во время запуска, поэтому TL494 не работает).Один транзистор включается немного быстрее, чем другой. Если вы присмотритесь, обратите внимание, что нижний конец первичной обмотки основного трансформатора не подключен напрямую к средней точке двух транзисторов - скорее, он проходит через обмотку на базовом приводном трансформаторе. Когда ток начинает течь в первичной обмотке главного трансформатора, он индуцирует ток в обмотках базового трансформатора, одна из которых будет поддерживать уже включенный транзистор, полностью включив его. Благодаря некоторой уловке с резонансом и насыщением (вероятно, с участием C10, включенного последовательно с первичной обмоткой трансформатора), весь этот процесс повторяется для другого транзистора, и весь мост автоколебается.Это обеспечит достаточную мощность для включения вспомогательного источника питания (оно достигает примерно 10 В, но может варьироваться) и запуска TL494, после чего он берет на себя управление мостовыми транзисторами и управляет им.

Еще одна чрезвычайно интересная особенность этой конфигурации, помимо возможности самозапуска, заключается в том, что TL494 не должен обеспечивать полный базовый ток возбуждения мостовым транзисторам - основной ток возбуждения фактически исходит из первичного тока, связанного через базовый приводной трансформатор.Управляющие транзисторы на первичной обмотке базового трансформатора просто управляют тем, какой из основных транзисторов удерживается первичным током.

Все это очень вольное и неполное объяснение. К счастью, есть фантастическая страница, которая точно описывает, как работает с - у Манфреда Морнхинвега есть страница о создании источника питания 13,8 В, 40 А, и его конструкция использует почти точно такую ​​же схему (или, скорее, китайский источник питания использует ту же схему, что и он, так как его, вероятно, был первым!).

К счастью (2), понимание фактической работы этой части не является существенным для понимания остальной части питания, поэтому я бы не стал слишком об этом беспокоиться. Это просто работает ™.

Выходное исправление и сглаживание

Для основного выхода постоянного тока имеется вторичная обмотка с центральным отводом и пара силовых диодов Шоттки, выполняющих выпрямление. Несколько сглаживающих колпачков, светодиодный индикатор и большой индуктор фильтра (L1).

J1, J4, J7 - это проволочные перемычки с низким сопротивлением, которые используются в качестве резистора для измерения тока.Поскольку печатная плата разработана с учетом различных конфигураций источника питания (напряжения и выходные токи), предусмотрены положения для шести перемычек - путем изменения количества перемычек уровень ограничения тока может быть изменен в соответствии с различными источниками питания.

Вероятно, можно было бы немного больше сглаживать конденсаторы на выходе, но пульсация не так уж и плоха. Обратите внимание, что конденсаторы составляют всего 16 В, что довольно близко к максимальному отрегулированному напряжению этого источника питания, составляющему почти 15 В. Вероятно, будет лучше выбрать конденсаторы с номинальным напряжением 25 В.

Вспомогательные принадлежности и принадлежности для вентиляторов

Оба они получены от вспомогательной обмотки с центральным ответвлением на главном трансформаторе. Питание вентилятора переключается с помощью термовыключателя для питания вентилятора при перегреве питания. Вспомогательный источник питания обеспечивает питание (Vcc) TL494.

Обратная связь / регулирование / ограничение тока

Делитель измерения напряжения (пунктирная рамка в дальнем левом углу схемы) дает диапазон регулировки примерно 10-15 В со значениями компонентов по умолчанию.Выход делителя (верхняя часть C28) подключен к неинвертирующему входу (контакт 1) операционного усилителя №1 в TL494. Инвертирующий вход (контакт 2) переходит к ссылке фиксированной 2.5V (половина Vref). TL494 регулирует свой выходной рабочий цикл, чтобы выходной сигнал делителя был равен 2,5 В. Компоненты, помеченные как «компенсация контура напряжения», имеют эффект вуду и уменьшают усиление обратной связи на высоких частотах. Я лишь смутно понимаю компенсацию контура, но идея состоит в том, чтобы попытаться предотвратить колебания или нестабильность источника питания (например,грамм. когда у вас есть ступенчатый переходный процесс в нагрузке, вы хотите, чтобы источник питания реагировал плавно и не колебался в течение некоторого времени). Конденсаторы C31 и C28 в делителе напряжения также выполняют компенсацию контура.

Операционный усилитель №2 TL494 используется для ограничения тока. Неинвертирующий вход (контакт 16) заземлен через R24. Инвертирующий вход (вывод 15) подключен к Vref (5 В) через R21 и к шунту считывания тока (параллельная комбинация J1, J4, J7) через R35. Как это работает - если ток не течет на выходе, токовый шунт не имеет напряжения на нем, поэтому напряжение, появляющееся на выводе 15 TL494, будет (750 / (750 + 68k)) * 5 = 55 мВ.По мере увеличения тока шунт считывания тока будет вытягивать конец R35 все более и более отрицательным, пока, когда напряжение на шунте не достигнет -55 мВ, контакт 15 не достигнет 0 В, и выход операционного усилителя № 2 отключится, уменьшая нагрузку ШИМ на вывод. Это происходит с выходным током 55 мВ / (3,9 мР / 3) = 42 А - немного выше заявленного предела 33 А, но я, вероятно, ошибаюсь в своих измерениях текущего сопротивления шунта. Несколько компонентов (C29 + R36) также используются для компенсации контура ограничения тока.

Мягкий старт

Контакт 4 TL494 называется входом управления мертвым временем и может использоваться для реализации функции плавного пуска. С24 изначально разряжается, поэтому при подаче питания на выводе DTC остается высокий уровень. Это запрещает вывод. По мере того как C24 постепенно заряжается (через R19), на контакте 4 падает напряжение, что медленно уменьшает мертвое время, доводя выход до рабочего уровня. На контакте 4 устанавливается около 0,4 В.

Защита от короткого замыкания

Эта часть схемы сначала поставила меня в тупик - я не мог понять, что она должна делать! Это очень умная защита от короткого замыкания.

Предположим, что источник питания работает нормально, с выходом 12 В. База Q5 питается от делителя выходного постоянного напряжения. Поскольку разделенное напряжение, создаваемое R38 + R31 (которое было бы примерно 2,2 В), значительно превышает падение база-эмиттер Q5 (0,7 В), транзистор остается включенным, понижая напряжение на C30. Учитывая прямое падение D13, это не повлияет на напряжение на входе DTC. Итак, при нормальной работе эта схема ничего не делает.

Предположим, что выход внезапно закорочен.V + падает до нуля (или очень близко), что приводит к выключению Q5. Теперь C30 будет заряжаться через R33 и ZD3 от вспомогательного источника питания. (Я не уверен в назначении ZD3). Как только он достигнет напряжения, достаточного для проведения D13, он подтянет вход DTC и приведет к отключению TL494.

Если теперь устранить короткое замыкание на выходе, выход останется отключенным - Q5 останется выключенным, поэтому C30 заряжается, удерживая вывод DTC на высоком уровне. Вы можете задаться вопросом, как еще доступен вспомогательный источник питания, когда TL494 выключен - помните поведение при запуске, когда мостовые транзисторы автоколебательны? Источник питания снова переходит в этот режим, чего достаточно для обеспечения вспомогательного питания около 10 В.

Единственный способ восстановить питание - это выключить весь блок питания, подождать и снова включить. Возникает вопрос, почему защита от короткого замыкания не срабатывает при включении питания? Короткий ответ - благодаря схеме плавного пуска на выводе DTC требуется достаточно времени, чтобы опуститься до низкого уровня, чтобы выходное напряжение накопило достаточно, чтобы поддерживать Q5 в проводящем состоянии (следите за некоторыми графиками этого события).

Вот некоторые формы сигналов, когда выход закорочен во время нормальной работы. Перед коротким замыканием Vcc составляет около 20 В, выход (V +) - 12 В, код неисправности - около 0.4 В, а на коллекторе Q5 около 0 В - он поддерживается высоким выходным напряжением. Когда выход закорочен, V + падает до нуля. Q5 выключается, и C30 начинает заряжаться, поэтому напряжение коллектора Q5 начинает расти, что, в свою очередь, вызывает повышение напряжения DTC. Когда он поднимается, TL494 начинает отключаться (увеличивается время простоя), пока, наконец, микросхема не будет полностью отключена, а DTC достигнет чуть менее 3 В. VCC падает примерно до 10 В, поскольку мост теперь работает в самовозбуждающемся режиме, так как он не получает никаких сигналов возбуждения от TL494.

Далее, вот формы сигналов во время запуска с нормальной нагрузкой на выходе (т.е. , а не закорочены). При запуске инвертор переходит в самовозбуждающийся режим, и напряжение VCC сразу повышается до 10-15 В или около того. Диагностический код неисправности сразу переходит в высокий уровень, потому что C24 изначально разряжается, а затем начинает медленно снижаться, поскольку он заряжается через R19. Поскольку выходное напряжение изначально равно нулю, C30 (на коллекторе Q5) начинает заряжаться через R33. Однако, как только выходное напряжение достигает примерно 3 или 4 В (опять же, благодаря работе с самовозбуждением), включается Q5, разряжая C30.После этого, как только DTC упадет до подходящего уровня, начнется нормальная работа. Обратите внимание, что во время нормального запуска напряжение коллектора Q5 никогда не достигает DTC плюс одно падение на диоде (D13), поэтому схема защиты от короткого замыкания никогда не может повлиять на уровень DTC во время нормального запуска.

И, наконец, вот поведение, когда питание запускается с закороченным выходом. Выходное напряжение пытается увеличиться, но не может (так как закорочено). Q5 постоянно выключен, поэтому C30 может заряжаться.Как только он достигает достаточного напряжения (DTC + падение одного диода), он удерживает на выводе DTC высокий уровень, предотвращая дальнейшую работу до тех пор, пока питание не будет отключено.

Когда мы здесь, важное замечание относительно защиты от короткого замыкания. Хотя я привел примеры его срабатывания при прямом коротком замыкании на выходе, на самом деле он сработает, когда выходного напряжения недостаточно для поддержания Q5 включенным - это происходит ниже примерно 4 В. Это означает, что при изменении источника питания для получения переменного выходного напряжения невозможно уменьшить выходное напряжение ниже 4 В, поскольку сработает защита от короткого замыкания.Чтобы включить выход ниже 4 В, вам нужно отключить защиту от короткого замыкания - проще всего удалить D13. Однако затем вы сталкиваетесь с другой проблемой - напряжение на выводе 2 TL494 удерживается на уровне 2,5 В делителем R30 + R34, и поэтому невозможно настроить выход ниже 2,5 В. Если, конечно, вы не изменили значения резисторов делителя для получения другого (более низкого) опорного напряжения на выводе 2, но это становится все более и более вовлечены.

Итак - о доработках!

Разработка нового делителя обратной связи

Вот новый делитель обратной связи, который я приготовил - он заменяет содержимое пунктирной рамки с пометкой «Voltage sense» на схеме дальше вверх по странице.

[Примечание: нет никакой земной причины для подключения двух резисторов 1 кОм последовательно - у меня просто не было в наличии резисторов 2 кОм!]

Между этим и оригинальным разделителем есть одно важное отличие. В оригинале регулировка была очень нелинейной, потому что VR1 просто использовался как переменный резистор между выводом обратной связи и землей. Новый делитель имеет линейную регулировку благодаря конфигурации заземленного стеклоочистителя. При показанных значениях корректировка составляет около 4.8-15В; обратите внимание, что я намеренно избегал слишком низкой скорости, чтобы предотвратить срабатывание защиты от короткого замыкания (см. ранее). Дополнительные сведения о преимуществах конфигурации обратной связи с заземленным стеклоочистителем см. На этой странице.

Что с конденсаторами? Помните, что в исходном делителе была пара конденсаторов для компенсации контура. Я действительно не знаю, что я делаю в отношении компенсации петли, но я подумал, что было бы лучше попытаться получить характеристику усиления / фазы нового делителя как можно ближе к характеристике старого, чтобы уменьшить вероятность возникновения нестабильности.Я определил правильные значения компонентов методом проб и ошибок в LTSpice. Вот графики зависимости усиления / фазы от частоты как для старых, так и для новых сетей обратной связи во всем диапазоне регулировки - обратите внимание, как, хотя диапазон значений шире для нового делителя (благодаря увеличенному диапазону регулировки), различные угловые частоты о том же самом. Повышение в районе 100 Гц - 10 кГц происходит от C1 + R39, соединяющего большую часть выходного напряжения с контактом обратной связи, а падение на высоких частотах связано с уменьшением импеданса C26.

Модификации оборудования

Сначала удалите некоторые оригинальные компоненты с печатной платы. Снимите C31, R32, R40 и VR1. Вот вид до и после:

Мы будем использовать некоторые из существующих дорожек и пэдов, чтобы соединить компоненты для нового делителя обратной связи. Следите за правильной ориентацией потенциометра 10 кОм. Вот схема (вид сверху, глядя «сквозь» плату):

И что, как говорится, все! Новый делитель обратной связи - единственная модификация, необходимая для обеспечения более широкого диапазона регулировки - я измерил диапазон 4.От 8 до 15 В, но он может незначительно отличаться в зависимости от допусков компонентов. Даже при самом низком выходном напряжении 4,8 В не было никаких признаков срабатывания защиты от короткого замыкания.

В дополнение к доработкам делителя напряжения, я решил добавить небольшой модуль цифрового вольтметра для отображения текущего выходного напряжения. Некоторое время назад я купил несколько модулей счетчиков и пока не нашел им применения.

Найдите на AliExpress TK0600 вольтметр 0-30 В или EBay для Новый 1 шт. Цифровой вольтметр постоянного тока 0-30 В Полезный светодиодный индикатор на панели Красный .Это наиболее вероятные поисковые запросы для получения результатов, но вам, возможно, придется проявить немного воображения для поиска других терминов. В этих конкретных модулях используются отдельные соединения для источника питания и сенсора, поэтому они могут измерять вплоть до 0 В. Другие модули фактически работают от измеренного напряжения, поэтому они ограничены в том, насколько низкое они могут измерить. Это аккуратные маленькие модули - 3 цифры, автоматическая десятичная точка, диапазон 0-30 В и имеют встроенный микроконтроллер STM800S3F3. Есть даже несколько выводов ввода-вывода, разбитых на заголовок, так что его, несомненно, можно перепрограммировать.Вот пара людей, которые проанализировали схему:

Источник питания для модуля вольтметра состоит из пары дополнительных диодов + конденсатора 100 мкФ + индуктивности последовательного фильтра 220 мкГн, прикрепленных к анодам D11 и D12 (см. Фото ниже). Это обеспечивает модуль около 20 В. Согласно сообщению EEVBlog, в модуле используется стабилизатор напряжения Holtek 7130 с максимальным входным напряжением 24 В, так что это вполне допустимо. Я не использовал существующий вспомогательный источник питания, потому что обнаружил, что он немного нестабилен, когда источник питания работает в режиме малой нагрузки / «самовозбуждаемом» режиме.Сенсорное соединение модуля вольтметра подключается к одной из различных больших перемычек, которые используются на выходной стороне для увеличения пропускной способности печатной платы.

Я установил регулировочный потенциометр и модуль вольтметра на корпусе источника питания, прямо над выходными клеммами. Немного сжато, но места было как раз достаточно, чтобы их вместить. Я также добавил кусок красного пластикового фильтра перед модулем, чтобы дисплей был более четким.

Производительность

Источник питания теперь регулируется с 4.От 8 до 15 В и, кажется, хорошо работает во всем диапазоне. Установленный на 7,4 В, он без проблем запускает бесщеточный двигатель; есть небольшое падение напряжения на максимальной скорости, но этого следовало ожидать. Я использую «серво-тестер» для подачи регулируемого сигнала ШИМ на ESC.


Установите на 7,4 В для использования с бесщеточным двигателем

Подключается к регулятору скорости вращения 25A и бесщеточному двигателю размера 2430

Вот видеообзор, охватывающий большинство аспектов модификации:

.

Смотрите также