Вход на сайт

Зарегистрировавшись на сайте Вы сможете добавлять свои материалы






Самодельный фоторезистор из транзистора


Фототранзистор своими руками из МП 42


Нашел схему простого фотореле, что бы сделать настенные часики с подсветкой, ночь наступает в часах светодиод загорается,но не нашел фототранзистор, бывает так, что хочется, а нет….

Решил изготовить самостоятельно из советского транзистора МП42.

Изучаем материальную базу.
Фототранзистор - это полупроводниковый прибор преобразующий оптическое излучение в электрический сигнал и одновременно усиливает его. Коллекторный ток у транзистора зависит от интенсивности излучения. Коллекторный ток тем больше, чем интенсивнее свет попадает на базовую зону фототранзистора.

Два режима работы фототранзистора:
Режим с плавающей базой. Работает только вывод эмиттера и вывод коллектора.
Режим транзисторный с источником смещения базовой цепи. Работают все три вывода плюс резистор на базовом выводе.
Ошибки при изготовлении фототранзистора из мп42.

Ни в коем случае не спиливать крышку сверху! Это приведёт к неминуемому сдвигу кристаллодержателя и порче кристалла или обрыву подводящих проводников. Приведет к 100% облому в изготовлении фототранзистора. Даже если спилите удачно свет не будет попадать на базовую зону кристалла!

Не отрезайте базовый вывод фототранзистора, так как есть схемы которые используют именно этот вывод.
Ни чем не заполняйте окно фототранзистора. Произойдет термическая порча кристалла.

Приступим к производству фототранзистора. Как и все транзисторы МП 42 имеет три вывода: База-Коллектор-Эмиттер.
Если транзистор перевернуть верх ногами и базой поставить к себе, то налево Эмиттер, на право Коллектор.


Зажимаем в тисочки

Берем напильничек

Спиливаем на выводе эмиттера

Появилось отверстие аккуратно иголочкой убираем фольгу

Фототранзистор готов, пользуемся!

Как сделать схему защелки транзистора

В этом посте мы узнаем, как сделать простую схему защелки транзистора, используя всего два BJT и несколько резисторов.

Введение

Транзисторная защелка - это схема, которая защелкивается с постоянным высоким выходом в ответ на мгновенный высокий входной сигнал и продолжает оставаться в этом положении, пока находится в состоянии питания, независимо от входного сигнала.

Схема защелки может использоваться для блокировки или защелкивания выхода схемы в ответ на входной сигнал и поддержания положения даже после того, как входной сигнал удален.Выход может использоваться для управления нагрузкой, управляемой через реле, тиристор, симистор или просто самим выходным транзистором.

Рабочее Описание:

Простая схема с защелкой на транзисторах, описанная в этой статье, может быть очень дешево изготовлена ​​с использованием пары транзисторов и другого пассивного компонента.


Как показано на рисунке, транзисторы T1 и T2 сконфигурированы таким образом, что T2 следует за T1, чтобы либо проводить, либо останавливать проводимость, в зависимости от триггера, полученного на входе T1.

T2 также действует как буфер и обеспечивает лучший отклик даже на очень слабые сигналы.

При подаче небольшого положительного сигнала на вход T1, T1 мгновенно проводит и подтягивает основание T2 к земле.

Это инициирует T2, который также начинает проводить с полученным отрицательным смещением, обеспечиваемым проводимостью T1.

Здесь необходимо отметить, что T, являющийся устройством NPN, реагирует на положительные сигналы, в то время как T2, являющийся PNP, реагирует на отрицательный потенциал, генерируемый проводимостью T1.

До сих пор функция выглядит довольно обычной, поскольку мы наблюдаем вполне нормальное и очевидное функционирование транзистора.

Как работает обратная связь от R3 для фиксации схемы

Однако введение напряжения обратной связи через R3 имеет огромное значение для конфигурации и помогает создать необходимую функцию в схеме, то есть схема BJT мгновенно фиксируется или зависает его выход с постоянным положительным питанием.

Если здесь используется реле, оно также будет работать и оставаться в этом положении даже после полного удаления входного триггера.

В момент, когда T2 следует за T1, R3 подключает или возвращает некоторое напряжение от коллектора T2 обратно к базе T1, заставляя его проводить практически «навсегда».

C1 предотвращает активацию схемы ложными срабатываниями, генерируемыми случайными срабатываниями срабатывания, и во время переходных процессов при включении.

Ситуация может быть восстановлена ​​либо перезапуском питания схемы, либо заземлением базы T1 с помощью кнопки.

Схема может использоваться для многих важных приложений, особенно в системах безопасности и в системах охранной сигнализации.

Расчет смещения транзистора

Это можно сделать с помощью следующих формул

VBE = 0,7 В

IE = (β + 1) IB ≅ IC

IC = βIB

Процедуру тестирования можно увидеть в следующем видеоуроке:

Список деталей

  • R1, R2, R4 = 10K,
  • R3 = 100K,
  • T1 = BC547,
  • T2 = BC557
  • C1 = 1 мкФ / 25 В
  • D1 = 1N4007,
  • Реле = по желанию.

Дизайн печатных плат

О компании Swagatam

Я инженер-электронщик (dipIETE), любитель, изобретатель, разработчик схем / печатных плат, производитель. Я также являюсь основателем веб-сайта: https://www.homemade-circuits.com/, где я люблю делиться своими инновационными идеями и руководствами по схемам.
Если у вас есть какие-либо вопросы, связанные со схемами, вы можете взаимодействовать с ними через комментарии, я буду очень рад помочь!

.

Поставщики и ресурсы беспроводной связи RF

О компании RF Wireless World

Веб-сайт RF Wireless World является домом для поставщиков и ресурсов радиочастотной и беспроводной связи. На сайте представлены статьи, руководства, поставщики, терминология, исходный код (VHDL, Verilog, MATLAB, Labview), тестирование и измерения, калькуляторы, новости, книги, загрузки и многое другое.

Сайт RF Wireless World охватывает ресурсы по различным темам, таким как RF, беспроводная связь, vsat, спутник, радар, волоконная оптика, микроволновая печь, wimax, wlan, zigbee, LTE, 5G NR, GSM, GPRS, GPS, WCDMA, UMTS, TDSCDMA, bluetooth, Lightwave RF, z-wave, Интернет вещей (IoT), M2M, Ethernet и т. Д.Эти ресурсы основаны на стандартах IEEE и 3GPP. В нем также есть академический раздел, который охватывает колледжи и университеты по инженерным дисциплинам и MBA.

Статьи о системах на основе Интернета вещей

Система обнаружения падений для пожилых людей на основе Интернета вещей : В статье рассматривается архитектура системы обнаружения падений, используемой для пожилых людей. В нем упоминаются преимущества или преимущества системы обнаружения падений Интернета вещей. Узнать больше➤
Также обратитесь к другим статьям о системах на основе Интернета вещей следующим образом:
• Система чистоты туалетов самолета. • Система измерения столкновения • Система отслеживания скоропортящихся продуктов и овощей • Система помощи водителю • Система умной торговли • Система мониторинга качества воды. • Система Smart Grid • Система умного освещения на базе Zigbee • Система интеллектуальной парковки на основе Zigbee. • Система интеллектуальной парковки на основе LoRaWAN


RF Статьи о беспроводной связи

В этом разделе статей представлены статьи о физическом уровне (PHY), уровне MAC, стеке протоколов и сетевой архитектуре на основе WLAN, WiMAX, zigbee, GSM, GPRS, TD-SCDMA, LTE, 5G NR, VSAT, Gigabit Ethernet на основе IEEE / 3GPP и т. Д. .стандарты. Он также охватывает статьи, относящиеся к испытаниям и измерениям, по тестированию на соответствие, используемым для испытаний устройств на соответствие RF / PHY. УКАЗАТЕЛЬ СТАТЕЙ >>.


Физический уровень 5G NR : Обработка физического уровня для канала 5G NR PDSCH и канала 5G NR PUSCH рассмотрена поэтапно. Это описание физического уровня 5G соответствует спецификациям физического уровня 3GPP. Читать дальше➤


Основы повторителей и типы повторителей : В нем объясняются функции различных типов ретрансляторов, используемых в беспроводных технологиях.Читать дальше➤


Основы и типы замирания : В этой статье рассматриваются мелкомасштабные замирания, крупномасштабные замирания, медленные, быстрые и т. Д., Которые используются в беспроводной связи. Читать дальше➤


Архитектура сотового телефона 5G : В этой статье рассматривается блок-схема сотового телефона 5G с внутренними модулями 5G. Архитектура сотового телефона. Читать дальше➤


Основы помех и типы помех: В этой статье рассматриваются помехи в соседнем канале, помехи в одном канале, ЭМ помехи, ICI, ISI, световые помехи, звуковые помехи и т. Д.Читать дальше➤


5G NR Раздел

В этом разделе рассматриваются функции 5G NR (New Radio), нумерология, диапазоны, архитектура, развертывание, стек протоколов (PHY, MAC, RLC, PDCP, RRC) и т. Д. 5G NR Краткий указатель ссылок >>
• Мини-слот 5G NR • Часть полосы пропускания 5G NR • 5G NR CORESET • Форматы DCI 5G NR • 5G NR UCI • Форматы слотов 5G NR • IE 5G NR RRC • 5G NR SSB, SS, PBCH • 5G NR PRACH • 5G NR PDCCH • 5G NR PUCCH • Эталонные сигналы 5G NR • 5G NR m-последовательность • Золотая последовательность 5G NR • 5G NR Zadoff Chu Sequence • Физический уровень 5G NR • Уровень MAC 5G NR • Уровень 5G NR RLC • Уровень 5G NR PDCP


Учебные пособия по беспроводным технологиям

В этом разделе рассматриваются учебные пособия по радиочастотам и беспроводной связи.Он охватывает учебные пособия по таким темам, как сотовая связь, WLAN (11ac, 11ad), wimax, bluetooth, zigbee, zwave, LTE, DSP, GSM, GPRS, GPS, UMTS, CDMA, UWB, RFID, радар, VSAT, спутник, WLAN, волновод, антенна, фемтосота, тестирование и измерения, IoT и т. Д. См. УКАЗАТЕЛЬ >>


Учебное пособие по 5G - В этом учебном пособии по 5G также рассматриваются следующие подтемы по технологии 5G:
Руководство по основам 5G Полосы частот руководство по миллиметровым волнам Волновая рама 5G мм Зондирование волнового канала 5G мм 4G против 5G Тестовое оборудование 5G Сетевая архитектура 5G Сетевые интерфейсы 5G NR канальное зондирование Типы каналов 5G FDD против TDD Разделение сети 5G NR Что такое 5G NR Режимы развертывания 5G NR Что такое 5G TF


Этот учебник GSM охватывает основы GSM, архитектуру сети, элементы сети, системные спецификации, приложения, Типы пакетов GSM, структура кадров GSM или иерархия кадров, логические каналы, физические каналы, Физический уровень GSM или обработка речи, вход в сеть мобильного телефона GSM, установка вызова или процедура включения питания, MO-вызов, MT-вызов, VAMOS, AMR, MSK, модуляция GMSK, физический уровень, стек протоколов, основы мобильного телефона, Планирование RF, нисходящая линия связи PS и восходящая линия связи PS.
➤Подробнее.

LTE Tutorial , охватывающий архитектуру системы LTE, охватывающий основы LTE EUTRAN и LTE Evolved Packet Core (EPC). Он обеспечивает связь с обзором системы LTE, радиоинтерфейсом LTE, терминологией LTE, категориями LTE UE, структурой кадра LTE, физическим уровнем LTE, Стек протоколов LTE, каналы LTE (логические, транспортные, физические), пропускная способность LTE, агрегация несущих LTE, передача голоса по LTE, расширенный LTE, Поставщики LTE и LTE vs LTE продвинутые.➤Подробнее.


RF Technology Stuff

Эта страница мира беспроводной радиосвязи описывает пошаговое проектирование преобразователя частоты RF на примере преобразователя RF UP от 70 МГц до диапазона C. для микрополосковой платы с использованием дискретных радиочастотных компонентов, а именно. Смесители, гетеродин, MMIC, синтезатор, опорный генератор OCXO, колодки аттенюатора. ➤Подробнее.
➤Проектирование и разработка радиочастотного трансивера ➤Конструкция RF фильтра ➤VSAT Система ➤Типы и основы микрополосковой печати ➤Основы волновода


Секция испытаний и измерений

В этом разделе рассматриваются контрольно-измерительные ресурсы, испытательное и измерительное оборудование для тестирования DUT на основе Стандарты WLAN, WiMAX, Zigbee, Bluetooth, GSM, UMTS, LTE.ИНДЕКС испытаний и измерений >>
➤ Система PXI для T&M. ➤ Генерация и анализ сигналов ➤Измерения слоя PHY ➤Тест устройства на соответствие WiMAX ➤ Тест на соответствие Zigbee ➤ Тест на соответствие LTE UE ➤Тест на соответствие TD-SCDMA


Волоконно-оптическая технология

Оптоволоконный компонент , основы, включая детектор, оптический соединитель, изолятор, циркулятор, переключатели, усилитель, фильтр, эквалайзер, мультиплексор, разъемы, демультиплексор и т. д.Эти компоненты используются в волоконно-оптической связи. Оптические компоненты INDEX >>
➤Учебное пособие по оптоволоконной связи ➤APS в SDH ➤SONET основы ➤SDH Рамочная конструкция ➤SONET против SDH


Поставщики и производители беспроводных радиочастотных устройств

Сайт RF Wireless World охватывает производителей и поставщиков различных компонентов, систем и подсистем RF для ярких приложений, см. ИНДЕКС поставщиков >>.

Поставщики радиочастотных компонентов, включая радиочастотный изолятор, радиочастотный циркулятор, радиочастотный смеситель, радиочастотный усилитель, радиочастотный адаптер, радиочастотный разъем, радиочастотный модулятор, радиочастотный трансивер, PLL, VCO, синтезатор, антенну, генератор, делитель мощности, сумматор мощности, фильтр, аттенюатор, диплексор, дуплексер, чип резистор, чип конденсатор, индуктор чипа, ответвитель, оборудование EMC, программное обеспечение RF Design, диэлектрический материал, диод и т. д.Производители RF компонентов >>
➤Базовая станция LTE ➤RF Циркулятор ➤RF Изолятор ➤Кристаллический осциллятор


MATLAB, Labview, встроенные исходные коды

Раздел исходного кода RF Wireless World охватывает коды, связанные с языками программирования MATLAB, VHDL, VERILOG и LABVIEW. Эти коды полезны для новичков в этих языках. ИНДЕКС ИСХОДНОГО КОДА >>
➤3-8 декодер кода VHDL ➤Код MATLAB для дескремблера ➤32-битный код ALU Verilog ➤T, D, JK, SR триггеры labview коды


* Общая информация о здоровье населения *

Выполните эти пять простых действий, чтобы остановить коронавирус (COVID-19).
СДЕЛАЙТЕ ПЯТЬ
1. РУКИ: Часто мойте их.
2. КОЛЕНО: Откашляйтесь
3. ЛИЦО: не трогайте его
4. НОГИ: держитесь на расстоянии более 3 футов (1 м) друг от друга
5. ЧУВСТВОВАТЬ: Болен? Оставайся дома

Используйте технологию отслеживания контактов >>, соблюдайте >> рекомендации по социальному дистанцированию и установить систему наблюдения за данными >> чтобы спасти сотни жизней. Использование концепции телемедицины стало очень популярным в таким странам, как США и Китай, чтобы остановить распространение COVID-19, поскольку это заразное заболевание.


RF Калькуляторы и преобразователи беспроводной связи

Раздел «Калькуляторы и преобразователи» охватывает ВЧ-калькуляторы, беспроводные калькуляторы, а также преобразователи единиц. Это касается беспроводных технологий, таких как GSM, UMTS, LTE, 5G NR и т. Д. СПРАВОЧНЫЕ КАЛЬКУЛЯТОРЫ Указатель >>.
➤ Калькулятор пропускной способности 5G NR ➤5G NR ARFCN против преобразования частоты ➤Калькулятор скорости передачи данных LoRa ➤LTE EARFCN для преобразования частоты ➤ Калькулятор антенны Яги ➤ Калькулятор времени выборки 5G NR


IoT-Интернет вещей Беспроводные технологии

Раздел IoT охватывает беспроводные технологии Интернета вещей, такие как WLAN, WiMAX, Zigbee, Z-wave, UMTS, LTE, GSM, GPRS, THREAD, EnOcean, LoRa, SIGFOX, WHDI, Ethernet, 6LoWPAN, RF4CE, Bluetooth, Bluetooth Low Power (BLE), NFC, RFID, INSTEON, X10, KNX, ANT +, Wavenis, Dash7, HomePlug и другие.Он также охватывает датчики Интернета вещей, компоненты Интернета вещей и компании Интернета вещей.
См. Главную страницу IoT >> и следующие ссылки.
➤ НИТЬ ➤EnOcean ➤Учебник по LoRa ➤Учебник по SIGFOX ➤WHDI ➤6LoWPAN ➤Zigbee RF4CE ➤NFC ➤Lonworks ➤CEBus ➤UPB



СВЯЗАННЫЕ ЗАПИСИ


RF Wireless Учебники



Различные типы датчиков


Поделиться страницей

Перевести страницу

.Самодельный транзистор

??? Любой пример ??? | Форум электроники

самодельный транзистор

Кто вам сказал, что это можно запретить где угодно в этом мире ???
: ')

Это одно из величайших изобретений века!

И это изобретение для всех нас. Никто и никогда не мог этого запретить !!!! Люди могут попытаться скрыть информацию. И наша обязанность - найти его и сделать доступным для всех ...

К сожалению, кажется, что транзистор может существовать и работать в небольших размерах и с использованием очень чистых полупроводниковых кристаллов.Это может быть проблемой, если кто-то хочет приготовить его дома. Но я не знаю, будет ли это правдой или это еще одно суеверие в этой области ....

В этой ссылке есть грубое описание самодельного транзистора, но использующего кристалл из диода ...
http://ourworld.compuserve.com/homepages/Andrew_Wylie/homemade.HTM

Я был бы рад получить копию книги, указанной на этой странице:
«Практические транзисторы и транзисторные схемы» Дж. С. Кендалла »

Похоже, что можно было бы сделать транзистор дома, используя галенит (сульфид свинца, PbS), как описано в:
http: // amasci.com / amateur / transis.html

Но я не нашел другого намека на это .....

Кроме того, я не нашел ничего, связанного с применением других полупроводников, таких как оксид меди, сульфид меди (как предложенный изобретателем первого транзистора Лилиенфельдом в 1928 году, первый образец выпущен в соответствии с последней ссылкой), селен или любой другой материал, который может сделать возможным изготовление транзистора в домашних условиях, но, например, не будет жизнеспособным методом для промышленного использования. изготовление и т. д. и т. д...

Другой пример, пластмассовые транзисторы (полимеры):
http://www.moskalyuk.com/links/plastic_transistors.htm

Также кажется несложным сделать туннельный диод дома, как показано по следующей ссылке:
http : //home.earthlink.net/~lenyr/ntype-nr.htm
Это полезное самодельное усилительное устройство. Используя это устройство, Олег Лосев мог уже в 1922 году создать первые твердотельные радиоприемники (как во введении к книге Томаса Ли «Конструирование радиочастотных интегральных схем КМОП», стр.20)

И это то, что заставило меня задуматься, нет ли способа сделать лучше устройство, я говорю, транзистор, дома .....

У кого-нибудь есть еще идеи ????
Должен быть способ сделать это, обычный !!!!

Ура.
С.

.

Как использовать транзисторы | Самодельные схемотехнические проекты

Если вы правильно поняли, как использовать транзисторы в схемах, вы, возможно, уже покорили половину электроники и ее принципов. В этом посте мы делаем попытку в этом направлении.

Введение

Транзисторы представляют собой полупроводниковые устройства с 3 выводами, которые способны проводить относительно высокую мощность через свои два вывода в ответ на значительно низкую мощность, потребляемую на третьем выводе.

Транзисторы в основном бывают двух типов: транзистор с биполярным соединением (BJT) и полевой транзистор металл-оксид-полупроводник (MOSFET)

Для BJT 3 вывода обозначаются как база, эмиттер, коллектор. .Сигнал малой мощности на выводе база / эмиттер позволяет транзистору переключать нагрузку сравнительно высокой мощности через вывод коллектора.

Для полевых МОП-транзисторов они обозначаются как затвор, источник, сток. Сигнал малой мощности на выводе затвор / исток позволяет транзистору переключать нагрузку сравнительно высокой мощности через вывод коллектора.

Для простоты мы обсудим здесь BJT, поскольку их характеристика менее сложна по сравнению с MOSFET.

Транзисторы (BJT) являются строительными блоками всех полупроводниковых устройств, используемых сегодня.Если бы не было транзисторов, не было бы никаких ИС или любого другого полупроводникового компонента. Даже ИС состоят из тысяч тесно связанных транзисторов, которые составляют особенности конкретного чипа.

Начинающим любителям электроники обычно трудно обращаться с этими полезными компонентами и настраивать их как схемы для предполагаемого применения.

Здесь мы изучим функции и способы использования и внедрения биполярных транзисторов в практические схемы.

Как использовать транзисторы, такие как коммутатор

Биполярные транзисторы, как правило, представляют собой трехпроводной активный электронный компонент, который в основном работает как переключатель для включения или выключения питания внешней нагрузки или соответствующего электронного каскада схемы.

Ниже показан классический пример, в котором транзистор подключен как усилитель с общим эмиттером:

Это стандартный метод использования любого транзистора в качестве переключателя для управления заданной нагрузкой. Вы можете видеть, когда к базе прикладывается небольшое внешнее напряжение, транзистор включается и проводит более сильный ток через выводы эмиттера коллектора, включая большую нагрузку.

Помните, отрицательная линия или линия заземления внешнего напряжения должна быть соединена с линией заземления транзистора или эмиттером, в противном случае внешнее напряжение не будет влиять на транзистор.

Использование транзистора в качестве драйвера реле

В одном из своих предыдущих постов я уже объяснял, как сделать схему драйвера транзистора.

В основном используется такая же конфигурация, как показано выше. Вот стандартная схема для того же:

Если вы не уверены в реле, вы можете обратиться к этой всеобъемлющей статье, в которой объясняется все о конфигурациях реле.

Использование транзистора для регулятора освещенности

Следующая конфигурация показывает, как транзистор можно использовать в качестве регулятора яркости света с использованием схемы эмиттерного повторителя.

Вы можете видеть, как изменяется переменный резистор или горшок, интенсивность лампы также меняется. Мы называем это эмиттерным повторителем, потому что напряжение на эмиттере или на лампе следует за напряжением на базе транзистора.

Если быть точным, то напряжение на эмиттере будет всего на 0,7 В ниже напряжения базы. Например, если напряжение базы составляет 6 В, эмиттер будет 6 - 0,7 = 5,3 В и так далее. Разница 0,7 В обусловлена ​​минимальным прямым падением напряжения транзистора на базе эмиттера.

Здесь сопротивление потенциометра вместе с резистором 1 кОм образует резистивный делитель на базе транзистора. При перемещении ползунка потенциометра напряжение на базе транзистора изменяется, и это соответственно изменяет напряжение эмиттера на лампе, и соответственно изменяется интенсивность лампы.

Использование транзистора в качестве датчика

Из приведенного выше обсуждения вы могли заметить, что транзистор выполняет одну важную функцию во всех приложениях.Он в основном усиливает напряжение на своей базе, позволяя переключать большой ток через его коллектор-эмиттер.

Эта функция усиления также используется, когда в качестве датчика используется транзистор. В следующем примере показано, как его можно использовать для определения разницы в окружающем освещении и соответствующего включения / выключения реле.

Здесь также LDR и предустановка 300 Ом / 5 кОм образуют делитель потенциала на базе транзистора.

На самом деле 300 Ом не требуется.Он включен, чтобы гарантировать, что база транзистора никогда не будет полностью заземлена, и, таким образом, она никогда не будет полностью отключена или отключена. Это также гарантирует, что ток через LDR никогда не может превысить определенный минимальный предел, независимо от того, насколько яркой является интенсивность света на LDR.

В темноте LDR имеет высокое сопротивление, которое во много раз превышает комбинированное значение 300 Ом и предустановки 5 К.

Из-за этого база транзистора получает большее напряжение со стороны земли (отрицательное), чем положительное, и его проводимость коллектор / эмиттер остается выключенной.

Однако, когда на LDR падает достаточное количество света, его сопротивление падает до значения в несколько килоом.

Это позволяет базовому напряжению транзистора значительно превысить отметку 0,7 В. Теперь транзистор смещается и включает нагрузку коллектора, то есть реле.

Как вы можете видеть, в этом приложении транзисторы в основном усиливают крошечное базовое напряжение, так что большая нагрузка на его коллекторе может быть включена.

LDR можно заменить другими датчиками, такими как термистор для измерения тепла, датчик воды для измерения воды, фотодиод для измерения ИК-луча и т. Д.

Вопрос к вам: Что произойдет, если поменять местами положение LDR и предустановки 300/5 K?

Пакеты транзисторов

Транзисторы обычно распознаются по их внешнему корпусу, в который может быть встроено конкретное устройство. Наиболее распространенными типами корпусов, в которые помещаются эти полезные устройства, являются Т0-92, ТО-126, ТО-220 и ТО-3. Мы постараемся разобраться во всех этих характеристиках транзисторов, а также научимся использовать их в практических схемах.

Понимание транзисторов TO-92 с малым сигналом:

Транзисторы, такие как BC547, BC557, BC546, BC548, BC549 и т. Д., Подпадают под эту категорию.

Это самые простые устройства в группе, которые используются в приложениях с низкими напряжениями и токами. Интересно, что эта категория транзисторов наиболее широко и повсеместно используется в электронных схемах благодаря своим универсальным параметрам.

Обычно эти устройства рассчитаны на работу с напряжением от 30 до 60 вольт на коллекторе и эмиттере.

Базовое напряжение не более 6, но они могут легко срабатывать при уровне напряжения всего 0,7 В на их базе. Однако ток должен быть ограничен примерно до 3 мА.

Три вывода транзистора TO-92 можно идентифицировать следующим образом:

Если держать печатную сторону к нам, правый вывод - это эмиттер, центральный вывод - основание, а левая ножка - коллектор устройства.


ОБНОВЛЕНИЕ: Хотите знать, как использовать транзисторы с Arduino? Прочтите здесь


Как сконфигурировать транзистор TO-92 в практическую плоскость.

Транзисторы в основном бывают двух типов, типа NPN и типа PNP, оба дополняют друг друга.В основном они оба ведут себя одинаково, но в противоположных направлениях и направлениях.

Например, устройству NPN потребуется положительный триггер относительно земли, в то время как устройству PNP потребуется отрицательный триггер по отношению к положительной линии питания для достижения указанных результатов.

Трем выводам описанного выше транзистора необходимо назначить определенные входы и выходы, чтобы заставить его работать для определенного приложения, которое, очевидно, предназначено для переключения параметра.

Провода должны быть присвоены следующие входные и выходные параметры:

эмиттер любого транзистора является опорным Цоколевка устройства , то есть он должен быть назначен указанный общий эталон питания, так что остальные два провода могу действовать применительно к нему.

npn-транзистор всегда будет нужен запас отрицательный в качестве ссылки, соединенный на его эмиттер свинца для надлежащего функционирования, в то время как для ПНП, это будет положительная линия питания для его эмиттер.

Коллектор - это провод, несущий нагрузку транзистора, а нагрузка, которую необходимо переключить, вводится на коллекторе транзистора (см. Рисунок).

База транзистора - это триггерный вывод, к которому требуется приложить небольшой уровень напряжения, чтобы ток через нагрузку мог пройти через линию эмиттера, замыкая схему и работая с нагрузкой.

Отключение источника питания триггера на базе немедленно отключает нагрузку или просто ток через клеммы коллектора и эмиттера.

Общие сведения о силовых транзисторах TO-126, TO-220:

Это силовые транзисторы среднего типа, используемые для приложений, требующих переключения мощных, относительно мощных нагрузок, трансформаторов, ламп и т. Д., А также для управления устройствами TO-3, например BD139, BD140, BD135 и т. Д.

Определение выводов BJT

Распиновки идентифицируются следующим образом:

Удерживая устройство печатной поверхностью к себе, правый вывод - это эмиттер, центральный вывод - коллектор а левая сторона - основа.

Функционирование и принцип срабатывания точно такие же, как описано в предыдущем разделе.

Устройство работает с нагрузкой от 100 мА до 2 А через коллектор до эмиттера.

Базовый триггер может иметь напряжение от 1 до 5 В с токами, не превышающими 50 мА, в зависимости от мощности переключаемых нагрузок.

Общие сведения о силовых транзисторах TO-3:

Их можно увидеть в металлических корпусах, как показано на рисунке.Распространенными примерами силовых транзисторов ТО-3 являются 2N3055, AD149, BU205 и др.

.

Смотрите также