Вход на сайт

Зарегистрировавшись на сайте Вы сможете добавлять свои материалы






Самодельный датчик присутствия схема


Датчик присутствия человека своими руками

 

Сегодня стали очень модны датчики присутствия для обнаружения движения при перемещении человека по помещению.

При подключении такого устройства к осветительным приборам, вы получите автоматическую систему по включению света. Датчик присутствия для обнаружения человека самостоятельно может собрать практически любой. И здесь схема сборки будет основной. Все о процессе сборки вы узнаете из этой статьи.

Принцип работы

Первое, что нужно знать при самостоятельной сборке такого прибора – это принцип его работы.
Обратите внимание! Многие путают такие устройства с датчиками движения. Но это разные модели.
Принцип работы прибора основан на реакции сенсора на местоположение человека или крупного животного. В основе работы устройства лежит эффект Доплер – изменение длины и частоты волны. Эти изменения регистрирует сенсор и передает их на прибор, для дальнейшего включения освещения или звукового сигнала. Причем сигнал на сенсор поступает вне зависимости от того, движется ли объект или остается неподвижным. Прибор оснащен антенной и генератором. Без наличия отражающего антенной сигнала, устройство пребывает в спящем режиме. Схема устройства работы приведена ниже.

Схема

При подключении прибора к источнику света, в ситуации появления любого объекта в рабочей зоне происходит активация включения света. При этом для включения освещения как такового не нужно наличие движения (даже незначительного).

Где используется

Датчик присутствия сегодня активно применяется в следующих областях:

  • система «умный дом» для включения света в автоматическом режиме (схема подключения приведена ниже). В этой ситуации он позволяет в разы сэкономить потребление электроэнергии;

Схема подключения

  • охранные системы;
  • робототехника;
  • различные производственные линии;
  • системы видеонаблюдения;
  • для управления потребления электроэнергии и т.д.

Помимо этого все чаще появляются интерактивные игрушки, оснащенные подобными устройствами. Но в большинстве случаев при реагировании прибора нет необходимости включения света. Подобные изделия могут реагировать на температуру, ультразвук, вес объекта и многие другие параметры. Включения освещения здесь не происходит. Прибор реагирует, например, включением звука или передачей сигнала на портативное мобильное устройство (у современных моделей).
Особенно незаменимы такие разработки в охранной системе. Но не каждый человек может позволить себе приобрести такого устройство. Они достаточно дороги и могут оказаться не по карману. Поэтому некоторые делают такие устройства своими руками.

Приступаем к сборке

Для того чтобы собрать датчик, вам нужна будет приведенная ниже схема.

Схема

 

Помимо этого вам понадобится:

  • генератор СВЧ;
  • транзистор КТ371 (КТ368), который должен быть предварительно усилен КТ3102;
  • компаратор;
  • микросхема К554СА3.

Все необходимые компоненты для сборки можно отыскать на радиорынке или в специализированных магазинах электроники.
По этой схеме необходимо собрать и припаять вышеперечисленные элементы.
По приведенной схеме сенсор будет работать так:

  • генератор вырабатывает СВЧ сигнал;
  • далее он передается на штыревую антенну;
  • затем сигнал отражается от перемещающегося в контролируемой зоне объекта;
  • в результате получается частотный сдвиг;
  • затем происходит его возврат на антенну и СВЧ генератор.

На данном этапе он будет работать по принципу приемника прямого преобразования. Это связано с тем, что полученный сигнал преобразуется в инфразвуковой (низкой частоты).
После преобразования сигнала происходит следующее:

  • теперь уже полученные низкочастотные колебания, попадая на предварительный усилитель, усиливаются;
  • затем они передаются на компаратор и преобразуются в импульсы (прямоугольные).

Если отражение сигнала не происходит, то на выходе с компаратора получается напряжение высокого уровня.
Подстроечный конденсатор необходим для установления частоты. Она должна быть равна резонансной частоте, имеющейся у антенны.

Обратите внимание! Данный параметр надлежит подбирать по максимальной чувствительности сенсора.

С конструктивной точки зрения, прибор должен выполняться на печатной схеме, выполненной из стеклотекстолита. Плата должна размещаться на пластмассовом корпусе.

Печатная схема (пример)

В качестве антенны можно использовать кусок жесткого провода. Для ее изготовления лучше выбрать медный провод. Его припаиваем к контактной площадке полученной платы. Вывод антенны осуществляется через выход на корпусе. Специалисты рекомендуют располагать антенну вертикально.
Помните, что в непосредственной близости от собранного своими руками датчика не должны размещаться любые экранирующие предметы. Помимо этого следует знать, что для нормального функционирования спаянного изделия его общий провод должен обладать емкостной связью с землей.

Завершающий этап

После того, как вы смонтировали компактное устройство, его следует подвесить с внутренней стороны двери, максимально близко к дверной ручке и дверному замку. Также изделие можно разместить и в других местах. Главное, чтобы контролируемая зона была достаточной.
В ходе монтажа необходимо следить за тем, чтобы длина проводников и выводов элементов была минимальна. Это позволит избежать помех, в результате наличия которых прибор может начать работать не адекватно.
Следуя приведенной инструкции и схеме, собрать своими руками датчик присутствия можно относительно просто. Главное – это смонтировать все составляющие в нужном порядке.

 

Как подключить инфракрасный фотодиодный датчик в цепь

В этом посте мы узнаем, как правильно подключить инфракрасный фотодиод в цепи, такие как цепь датчика приближения. Объяснение представлено в виде обсуждения между мной и одним из преданных читателей этого блога NVD.

Вот обсуждение, в котором объясняется, как подключить фотодиод к электронной схеме.

Проверка подключения ИК-фотодиода в цепи

Вопрос : Подскажите, пожалуйста, работает ли следующая схема или нет.Я думаю, что выход ic 5v. Я хочу, чтобы выход был подключен к реле на 12 В, а не к зуммеру .. Вы можете сказать, какие изменения я должен внести в схему ..

Анализ схемы

Ответ:

(+) - это анод , а (-) - катод фотодиода. Другими словами, вывод, связанный с более широкой пластиной внутри фотодиода, будет катодом, а вывод, связанный с более тонкой пластиной внутри фотодиода, будет анодом

  • , если он установлен правильно, он должен работать.Однако приведенная выше диаграмма содержит много ошибок и никогда не будет работать. Конфигурация ИК-фотодиода с операционным усилителем потребует некоторых изменений.
  • Для настройки реле вы можете использовать BC547 / релейный каскад на выходе операционного усилителя, холодное сопротивление базового резистора составляет 10 кОм
  • Для получения подробной информации о каскаде драйвера реле вы можете обратиться к следующей статье: https: / /homemade-circuits.com/2012/01/how-to-make-relay-driver-stage-in.html

Вопрос:

Хорошо, есть ли положительные и отрицательные клеммы для ИК-приемника и передатчика, такие как светодиод ,Я новичок в этом, поэтому спрашиваю

Полярность для ИК-фотодиодов в передатчиках

  • , как и любой другой диод, ИК-фотодиоды также имеют полярность и должны быть подключены соответственно.

Вопрос:

В схему подключен фотодиод прямого смещения. это неправильно? Пожалуйста, проверьте, сэр.

Принципиальная схема

Полярность ИК-фото для приемника

  • Полярность ИК-фотодиода передатчика правильная... Неправильная полярность приемника , для приемника необходимо инвертировать, как показано ниже.

Вопрос:

Сэр, сначала я забыл подключить вывод 3 микросхемы к резистору приемника, затем я подал питание 12 В, поэтому светится только светодиод. После этого я подключил контакт 3 к резистору и дал 9В. Теперь светодиод загорается, когда я поворачиваю переменный резистор в одну сторону. Светодиод не загорается, когда впереди появляется препятствие.

Может ли сгореть ИК-фотодиод

Я подключил все правильно, но он не работает, есть ли вероятность сгорания ИС или фотодиода при подключении к источнику питания 12 В.У вас есть электрическая схема ИК-датчика приближения.

Пожалуйста, помогите мне, сэр.

Ответ

  • Фотодиод никогда не сгорит, пока он подключен последовательно с резистором.

Итак, почему фотодиод приемника не отвечает

Ответ:

На схеме выше фотодиод, подключенный к операционному усилителю, никогда не сможет запустить операционный усилитель в ответ на полученный инфракрасный сигнал. Почему ??

Правильный способ подключения фотодиода к операционному усилителю

Напряжение, генерируемое фотодиодом приемника в ответ на сигналы от фотодиода передатчика, вряд ли составит милливольт, может быть всего несколько милливольт.

Хотя операционные усилители могут быть чувствительны к обнаружению даже до пары милливольт, резистор 10 кОм между контактом № 3 и землей мгновенно аннулирует крошечный сигнал милливольт, что делает невозможным его обнаружение операционным усилителем.

Таким образом, мы можем предположить, что именно резистор 10 кОм не позволяет операционному усилителю обнаруживать выходной сигнал фотодиодов.

На следующей схеме показано, как правильно подключить фотодиод к операционному усилителю, чтобы он эффективно реагировал на сигналы от любого источника ИК-фотодиодного передатчика:

На приведенной выше диаграмме мы видим, что более ранний резистор 10 кОм на неинвертирующем Вывод операционного усилителя заменен конденсатором малой емкости, и теперь это позволяет операционному усилителю реагировать на сигналы, генерируемые фотодиодами Rx, Tx.

Фактически, операционный усилитель все равно будет реагировать без конденсатора, однако никогда не рекомендуется оставлять входы операционного усилителя плавающими, пока он запитан, поэтому заземленный конденсатор гарантирует, что соответствующий вход операционного усилителя никогда не останется плавающим и подвержен риску паразитные сигналы.

Вы можете подумать, что конденсатор можно было бы заменить резистором высокого номинала, порядка многих мегомов, извините, что это тоже может не помочь, которое снова запретит операционному усилителю воспринимать сигналы с фотодиода и, в конечном итоге, низкий Значение конденсатора приводит к тому, что это правильный выбор.

Подключение фотодиода для активации реле

Изображенный выше фотодиодный детектор на основе операционного усилителя можно дополнительно модернизировать для запуска ступени реле путем интеграции ступени драйвера реле, как показано на следующей схеме:

Обратная связь от г-на Нормана Келли (один из заядлых читателей этого блога):

Привет, Свагатам,

Я искал схему, чтобы предупредить меня, когда кто-то входит в мой двор и на переднюю палубу.

Доставщики оставляют вещи на передней палубе и не звонят в дверной звонок, поэтому я не знаю, что мои пакеты находятся на палубе.Еще ночью я хотел бы знать, не входит ли кто-нибудь в мой двор.

Я разработал схему с PIR и беспроводным TX / RX для воспроизведения сообщения в моем доме. Все работает, но ложных срабатываний много и жену это сводит с ума.

Я предполагаю, что радиочастотные сигналы запускают PIR. Я попытался разделить их на несколько дюймов, и это помогло, но недостаточно. Итак, я решил взглянуть на ИК-порт, чтобы обнаружить человека, открывающего ворота во двор, а затем передающего этот сигнал по беспроводной сети.Я хотел сделать инфракрасный луч, но для этого требуется больше компонентов, которых у меня сейчас нет.

Итак, я решил, что инфракрасный датчик приближения будет работать, если я поместил датчик у ворот и поместил на них отражатель, который отражал бы инфракрасный свет при открытии ворот.

Я видел вашу схему выше "Как подключить ИК-фотодиодный датчик".

Хлеб просел на схему и работает нормально. Единственная проблема в том, что он использует 50 мА в режиме ожидания и 70 мА в активном состоянии.

Дистанционный монтаж с батарейным питанием, кажется, исключен, если нет способа снизить требования к питанию или мне придется подавать низкое напряжение на устройство.

Есть предложения или комментарии? Спасибо за вашу помощь!
Norman Kelley

Мой ответ:

Hi Norman,

Высокое потребление может быть просто из-за неправильных значений резистора светодиодов, попробуйте использовать 1K для светодиода передатчика, а также для светодиода индикатора, общее потребление должно снизиться примерно до 6 мА

О Swagatam

Я инженер-электронщик (dipIETE), любитель, изобретатель, разработчик схем / печатных плат, производитель. Я также являюсь основателем сайта: https: // www.homemade-circuits.com/, где я люблю делиться своими новаторскими идеями и руководствами по схемам.
Если у вас есть какой-либо вопрос, связанный со схемой, вы можете взаимодействовать с ним через комментарии, я буду очень рад помочь!

.Принципиальная схема детектора движения / датчика движения на основе датчика

PIR

Пассивный инфракрасный датчик (PIR) - очень полезный модуль, который используется для построения многих видов систем охранной сигнализации и датчиков движения . Он называется пассивным, потому что он принимает инфракрасное излучение, а не излучает. Обычно датчик PIR обнаруживает любое изменение тепла, и всякий раз, когда он обнаруживает любое изменение, его выходной PIN становится ВЫСОКИМ. Их также называют пироэлектрическими или инфракрасными датчиками движения.

Здесь следует отметить, что каждый объект излучает некоторое количество инфракрасного излучения при нагревании.Человек также излучает инфракрасное излучение из-за тепла тела. Датчики PIR могут обнаруживать небольшие отклонения в инфракрасном диапазоне. Всякий раз, когда объект проходит через зону действия датчика, он излучает инфракрасное излучение из-за трения между воздухом и объектом и попадает в инфракрасный датчик.

Основным элементом ИК-датчика является пироэлектрический датчик , показанный на рисунке (прямоугольный кристалл за пластиковой крышкой). Наряду с этим, BISS0001 («микросхема детектора движения Micro Power PIR»), некоторые резисторы, конденсаторы и другие компоненты, используемые для построения датчика PIR.BISS0001 IC принимает входной сигнал от датчика и выполняет обработку, чтобы сделать выходной контакт HIGH или LOW соответственно.

Пироэлектрический датчик делится на две половины, когда нет движения, обе половины остаются в одном состоянии, это означает, что оба воспринимают один и тот же уровень инфракрасного излучения. Как только кто-то входит в первую половину, уровень инфракрасного излучения одной половины становится больше, чем другой, и это заставляет PIR реагировать и делать выходной вывод высоким.

Пироэлектрический датчик закрыт пластиковой крышкой, внутри которой находится множество линз Френеля.Эти линзы изогнуты таким образом, чтобы датчик мог покрывать широкий диапазон.

Здесь мы построили очень простую схему детектора движения . Мы используем ИК-датчик HC-SR501, светодиод (который будет светиться при каждом движении перед датчиком) и резистор. Контакт Vcc PIR подключен к положительной клемме батареи 9 В, контакт GND подключен к отрицательной клемме батареи, а выходной контакт PIR подключен к светодиоду с резистором 220 Ом. Когда есть какое-либо движение в диапазоне PIR, светодиод начинает мигать.

Компоненты цепи

  • Датчик PIR (мы использовали HC-SR501)
  • Резистор 220 Ом (любой резистор ниже 1 кОм)
  • светодиод
  • Аккумулятор (5-9В)

Принципиальная схема и пояснения

PIR требуется некоторое время, чтобы стабилизироваться в соответствии с окружающими условиями, поэтому вы можете обнаружить, что светодиод включается и выключается случайным образом в течение примерно 10-60 секунд.

Теперь, когда мы обнаруживаем, что светодиод мигает при любом движении, посмотрите назад на PIR, вы обнаружите перемычку, которая находится между внешним угловым PIN-кодом и средним PIN-кодом (см. Диаграмму выше).Это называется «без повторного срабатывания» или « Неповторяющийся триггер» и перемычка находится в положении L. В этом положении светодиод будет постоянно мигать, пока не появится движение.

Теперь, если вы подключите эту перемычку между PIN-кодом во внутреннем углу и средним PIN-кодом, светодиод будет гореть все время, пока не будет движения. Это называется «повторным запуском» или « Повторяющийся триггер» , а перемычка находится в положении H.

Есть два потенциометра (показаны на рисунке выше), которые используются для установки временной задержки и диапазона расстояний.Временная задержка - это время, в течение которого светодиод будет оставаться включенным (вывод ВЫСОКИЙ). При неповторяющемся запуске, ВЫХОД автоматически станет низким по истечении времени задержки. В режиме повторного запуска OUTPUT также станет низким после временной задержки, но при постоянной активности человека; ВЫХОД будет оставаться ВЫСОКИМ даже после задержки по времени.

Поверните потенциометр регулировки расстояния по часовой стрелке, увеличенное расстояние срабатывания (около 7 метров), с другой стороны, расстояние срабатывания уменьшается (около 3 метров).

Поверните потенциометр задержки времени по часовой стрелке, датчик вращения увеличится (600 с, 10 минут), с противоположной стороны уменьшите задержку (0,3 секунды).

Обычно PIR обнаруживает инфракрасное излучение с длиной волны от 8 до 14 микрометров и имеет диапазон от 3 до 15 метров с полем зрения менее 180 градусов. Этот диапазон может варьироваться в зависимости от модели. Некоторые потолочные PIR могут охватывать 360 градусов. PIR обычно работают при 3–9 В постоянного тока.

,Принципиальная схема модуля инфракрасного датчика

DIY

Датчики

являются очень важной частью электроники, особенно в робототехнике и автоматике. Датчики в электронных устройствах упрощают нашу жизнь, автоматически обнаруживая устройства и управляя ими без вмешательства человека. Существует много видов датчиков, таких как датчик пожара, датчик влажности, датчик движения, датчик температуры, ИК-датчик и т. Д. В этой статье мы расскажем о ИК-датчике (инфракрасный датчик), как он работает и как построить ИК-датчик . Модуль датчика .

ИК-датчик - очень популярный датчик, который используется во многих приложениях в электронике, например, в системах дистанционного управления, детекторах движения, счетчиках продуктов, роботах-повторителях линий, сигнализации и т. Д.

ИК-датчик

в основном состоит из ИК-светодиода и фотодиода , эта пара обычно называется ИК-пара или Фотопара . ИК-датчик работает по принципу, по которому ИК-светодиод излучает ИК-излучение, а фотодиод воспринимает это ИК-излучение.Сопротивление фотодиода изменяется в зависимости от количества падающего на него ИК-излучения, следовательно, падение напряжения на нем также изменяется, и с помощью компаратора напряжения (например, LM358) мы можем определить изменение напряжения и соответственно сгенерировать выходной сигнал.

Размещение ИК-светодиода и фотодиода может быть выполнено двумя способами: Прямой и Косвенный . В Прямое падение , ИК-светодиод и фотодиод расположены друг напротив друга, так что ИК-излучение может напрямую попадать на фотодиод.Если мы поместим между ними какой-либо объект, то он прекратит попадание инфракрасного света на фотодиод.

И в Indirect Incidence , как ИК-светодиод, так и фотодиод расположены параллельно (бок о бок), обращены в одном направлении. Таким образом, когда объект находится перед парой инфракрасных лучей, инфракрасный свет отражается от объекта и поглощается фотодиодом. Обратите внимание, что объект не должен быть черным, поскольку он будет поглощать весь ИК-свет, а не отражать его. Обычно ИК-пара размещается в модуле ИК-датчика таким образом.

Для сборки ИК-модуля нам в основном нужна пара ИК-сигналов (ИК-светодиод и фотодиод) и LM358 с некоторыми резисторами и светодиодом.

ИК-светодиод

ИК-светодиод излучает свет в диапазоне инфракрасных частот. ИК-свет невидим для нас, так как его длина волны (700 нм - 1 мм) намного превышает диапазон видимого света. Все, что производит тепло, излучает инфракрасное излучение, как, например, наше человеческое тело. Инфракрасное излучение имеет те же свойства, что и видимый свет, например, его можно фокусировать, отражать и поляризовать, как видимый свет.

ИК-светодиод выглядит как обычный светодиод, а также работает как обычный светодиод, потребляет ток 20 мА и мощность 3 точки. ИК-светодиоды имеют угол испускания света прибл. 20-60 градусов и диапазон прибл. от нескольких сантиметров до нескольких футов, это зависит от типа ИК-передатчика и производителя. Некоторые передатчики имеют дальность действия в километрах.

Фотодиод

Фотодиод

считается светозависимым резистором (LDR), что означает, что он имеет очень высокое сопротивление в отсутствие света и становится низким, когда на него падает свет.Фотодиод - это полупроводник, который имеет переход P-N, , работающий в режиме обратного смещения , что означает, что он начинает проводить ток в обратном направлении, когда на него падает свет, и величина протекающего тока пропорциональна количеству света. Это свойство делает его полезным для обнаружения ИК-излучения.

Фотодиод выглядит как светодиод с черным покрытием на внешней стороне. Он используется с обратным смещением, как показано на принципиальной схеме ниже.

LM358

LM358 - это операционный усилитель (операционный усилитель), и в этой схеме мы используем его в качестве компаратора напряжения .LM358 имеет внутри два независимых компаратора напряжения, которые могут питаться от одного PIN-кода, поэтому мы можем использовать одну микросхему для создания двух модулей ИК-датчиков. Здесь мы использовали только один компаратор, который имеет входы на PIN 2 и 3 и выход на PIN 1. Компаратор напряжения имеет два входа, один инвертирующий вход, а второй неинвертирующий вход (PIN 2 и 3 в LM358). Когда напряжение на неинвертирующем входе (+) выше, чем напряжение на инвертирующем входе (-), тогда на выходе компаратора (PIN 1) высокий уровень.И если напряжение инвертирующего входа (-) выше, чем неинвертирующего конца (+), то выходное напряжение НИЗКОЕ.

Модуль ИК-датчика

Компоненты

  • ИК пара (ИК-светодиод и фотодиод)
  • Микросхема LM358
  • Резистор 100, 10к, 330 Ом
  • Резистор переменный - 10к
  • светодиод

Подключения можно увидеть на принципиальной схеме инфракрасного датчика .Фотодиод подключен с обратным смещением, инвертирующий конец LM358 (PIN 2) подключен к переменному резистору, для регулировки чувствительности датчика. А неинвертирующий конец (PIN 3) подключен к стыку фотодиода и резистора.

Когда мы включаем схему, на фотодиод не поступает ИК-излучение, а выход компаратора - НИЗКИЙ. Когда мы берем какой-то объект (не черный) перед парой ИК-излучения, ИК-свет, излучаемый ИК-светодиодом, отражается объектом и поглощается фотодиодом.Теперь, когда отраженное ИК-излучение падает на фотодиод, напряжение на фотодиоде падает, а напряжение на последовательном резисторе R2 увеличивается. Когда напряжение на резисторе R2 (который подключен к неинвертирующему концу компаратора) становится выше, чем напряжение на инвертирующем конце, тогда выход становится ВЫСОКИМ и загорается светодиод.

Напряжение на инвертирующем конце, которое также называется Пороговое напряжение , можно установить, вращая ручку переменного резистора. Чем выше напряжение на инвертирующем конце (-), тем меньше чувствительность датчика, а чем ниже напряжение на инвертирующем конце (-), тем чувствительнее датчик.

Вся эта схема может быть размещена на печатной плате для создания надлежащего профессионального модуля ИК-датчика .

,Переключатель датчика присутствия человека потолка

утопил 360 градусов

Датчик присутствия человека на потолке, утопленный на 360 градусов

Описание

В продукте используется детектор с хорошей чувствительностью, интегральная схема. В нем собраны автоматика, удобный сейф, энергосберегающие и практичные функции. Он использует инфракрасную энергию человека в качестве источника управляющего сигнала, он может запускать нагрузку сразу, когда кто-то входит в поле обнаружения.Он может автоматически определять день и ночь. Его легко установить и широко использовать.

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Источник питания: 100V / AC-240V / AC

Диапазон обнаружения: 360 °

Частота питания: Рабочая температура: -20 ~ + 40 ° C

Окружающий свет: 3-2000 люкс (регулируемый)

Рабочая влажность: <93% относительной влажности

Задержка по времени: мин.10 с ± 3 с

Макс: 7 мин ± 2 мин

Потребляемая мощность: 0,45 Вт (работа)

0,1 Вт (статическая)

Номинальная нагрузка: 1200 Вт (лампа накаливания)

300 Вт (энергосбережение лампа)

Обнаружение Скорость движения: 0,6 ~ 1,5 м / с

Расстояние обнаружения: макс. 6 м (<24 ° C)

Высота установки: 2,2 м ~ 4 м

2.Перемещение прозрачной виниловой крышки, которая находится в нижней части датчика.
3. Ослабьте винты в соединительной клемме, подключите питание и номинальную нагрузку к соединительной клемме датчика в соответствии с схемой подключения.
4. Затяните винты; вставьте прозрачную виниловую крышку в исходную станцию.
5. Сложите металлическую пружину датчика вверх, пока они не встанут в положение «I» с датчиком, затем поместите датчик в отверстие или монтажную коробку, расположенную в потолке, размер аналогичен позиции.Отпустив пружину, датчик будет установлен в это установочное положение.
6. После завершения установки датчик может быть подключен к источнику питания и протестирован.

ЭСКИЗ ПОДКЛЮЧЕНИЯ РИСУНОК: (Согласно рисунку справа)

ТЕСТ

1. Поверните ручку TIME против часовой стрелки на минимум, поверните ручку LUX по часовой стрелке на максимум (солнце ).

2. Включите питание, датчик будет электрифицирован и прогрет, через 30 секунд предмет будет введен в рабочее состояние.
Через 3,5 ~ 10 секунд после того, как свет погаснет в первый раз и затем обнаружится, нагрузка должна работать.
4. Поверните ручку LUX против часовой стрелки на минимум (луна). Нагрузка индуктора не должна работать после того, как нагрузка перестала работать. Если вы закроете окно обнаружения непрозрачными предметами (полотенцем и т. Д.), Нагрузка сработает. При отсутствии индукционного сигнала нагрузка должна перестать работать в течение 5-15 секунд.

Примечание: при тестировании при дневном свете поверните ручку LUX в положение (SUN), иначе лампа датчика не сможет работать!

ПРИМЕЧАНИЕ

1.Устанавливает электрик или опытный человек.

2. Избегайте установки на беспорядочные объекты.
3. Перед окном детектирования не должно быть препятствий и движущихся объектов.
4. Избегайте установки рядом с зонами изменения температуры воздуха, такими как кондиционер, центральное отопление и т. Д.
5. С учетом вашей безопасности, пожалуйста, не открывайте крышку, если вы обнаружите сцепное устройство после установки.

НЕКОТОРЫЕ ПРОБЛЕМЫ И РЕШЕНИЕ:

1.Нагрузка не работает:
а. Пожалуйста, проверьте правильность подключения питания и нагрузки.
г. Проверьте, хорошая ли нагрузка.
г. Убедитесь, что рабочее освещение соответствует окружающему освещению.
2. Плохая чувствительность:
a. Проверьте, нет ли перед окном обнаружения препятствий для приема сигналов
.
г. Пожалуйста, проверьте, не слишком ли высокая температура окружающей среды.
г. Пожалуйста, проверьте, находится ли источник сигналов в полях обнаружения.
г. Убедитесь, что высота установки соответствует высоте, указанной в инструкции.
3. Датчик не может выключить нагрузку автоматически:
a. Проверьте, есть ли постоянные сигналы в полях обнаружения.
г. Проверьте, не установлено ли максимальное время задержки.
г. Проверить, соответствует ли мощность инструкции.
г. Убедитесь, что изменение температуры явно приближается к датчику, например, к датчику состояния воздуха или
центрального отопления и т. Д.

FAQ

Q1. Вы производитель или торговая компания?

  • Мы являемся производителем, предоставляющим услуги OEM и ODM.

Q2. Что такое MOQ для заказа?

  • 50-100ПК есть в наличии, некоторые товары есть в наличии, пробный заказ принят.

Q3.Есть ли датчик освещенности?

  • Да, вы можете настроить его самостоятельно.

Q4: Можно ли отрегулировать время задержки?

  • он может регулироваться от 10 с до 7 минут (даже больше, мы можем настроить его).

Q5: Что такое доставка?

  • Некоторые позиции есть в наличии, срок доставки 1-2 рабочих дня.
  • 1-2 рабочих дня для образца, 15-20 рабочих дней для массового производства, в зависимости от количества.

Q6: Какие сертификаты есть у вашей продукции?

Для получения дополнительной информации я буду рад помочь вам в Интернете. ~ Cherry

9000 ,


Смотрите также