Вход на сайт

Зарегистрировавшись на сайте Вы сможете добавлять свои материалы






Самодельный цап схема


РадиоКот :: ЦАП - своими руками


Итак, прежде всего, хочу выразить большую благодарность хорошему человеку (в целях конспирации не называю, кто это :)), который в рамках новогоднего проекта Кот-Мороз 2012 прислал мне подарок. Кроме прочих полезностей, внутри обнаружился чип PCM1794 от Burr-Brown. Здоровый интерес взял верх, и я, отложив в сторону все, чем занимался до этого, начал искать информацию о том, что это такое и с чем его едят. Выяснилось, что данный чип применяется для построения высококачественных цифро-аналоговых преобразователей, которые преобразуют цифровой аудио-поток в аналоговый аудио-сигнал с максимально возможным качеством. Также выяснилось, что подобные устройства от ведущих производителей (Cyrus, Cambridge Audio, Hegel и др.) стоят очень немалых денег, как и сам чип не дешевый. Интерес возрос вдвойне – за что аудио-маньяки и аудиофилы готовы отдавать бешеные деньги – за красивую оболочку и дизайн или все-таки за действительно качественный звук?

  Данная область электроники для меня оказалась новой и, чтоб сильно не углубляться в дебри цифро-аналогового преобразования (как выяснилось потом, углубиться все-таки пришлось), решил сначала поискать в сети готовые самодельные конструкции ЦАП. Прежде всего, искал конструкции с применением имеющегося у меня чипа. Как выяснилось, данная тема активно развивается на разных форумах о качественном звуке (в частности – Вегалаб). Просмотрев несколько схем, отчаялся – так как, мне оказалось проблематично на территории Украины приобрести  необходимые комплектующие. Но, как это часто бывает, чисто случайно наткнулся на один забугорный ресурс [1], где оказалось много конструкций ЦАП. Из описанных там отдельных модулей удалось собрать единую схему ЦАП, к которой нашлись комплектующие в доступных мне Интернет-магазинах и базах (пришлось заказывать из нескольких). Об этой конструкции и хочу рассказать.

Большинство современной аудио-аппаратуры имеет  выход для передачи цифрового аудио-потока, именуемый S/PDIF. Также цифровой выход может присутствовать в звуковых картах для ПК и материнских платах. Есть он и в старых моделях компьютерных CD-ROM (с кнопками Плей/пауза, стоп, в некоторых моделях еще и с переключением треков).

Данный стандарт был разработан компаниями SONY и PHILIPS и расшифровывается как Sony/PhilipsDigital Interface. Является совокупностью спецификаций протокола низкого уровня и аппаратной реализации, описывающих передачу цифрового звука между различными компонентами аудиоаппаратуры. Цифровой сигнал может передаваться по коаксиальному 75-омному кабелю (выход обозначается COAX) или по оптоволоконному кабелю (выход обозначается TOSLINK или OPTICAL) (рис.1). Оптический выход обычно закрыт заглушкой.

Рис.1

Формат S/PDIF подразумевает передачу цифрових аудио сигналов от одного устройства к другому без процедуры преобразования в аналоговый сигнал, что позволяет избежать ухудшения качества звука.

Схема.

Предварительно нарисовал блок-схему ЦАП (рис. 2):

Рис. 2 блок-схема ЦАП

S/PDIF to I2S receiver – это приемник/преобразователь цифрового аудио-потока из S/PDIF в двунаправленную асинхронную шину с последовательной передачей данныхI2S (Inter-IC Sound or Integrated Interchip Sound), может иметь в своем составе несколько цифровых входов, которые коммутируются программно или хардварно, цифровой фильтр, подавление джиттера, и еще много чего полезного. Данные из шины поступают, собственно в сам ЦАП (DAC), где и преобразуются в аудио-сигнал.  Выход ЦАП – дифференциальный, токовый.  Далее сигналы левого и правого каналов поступают в преобразователь ток/напряжение (I/U+ single-endedout) и после него – на выход устройства, которое имеет несимметричный заземленный выход. После него стерео-сигнал можно подавать на предварительный усилитель или усилитель мощности. Следует заметить, что усилитель мощности и акустика должны быть если не HI-END качества, то близкого к нему. Каждое из устройств этой блок-схемы имеет свой собственный высококачественный источник питания (особенно это касается аналоговой части). Это нужно для исключения взаимного проникновения помех, которые могут возникать при работе отдельных модулей устройства.

 Согласно блок-схеме, в программном комплексе KiСad была нарисована принципиальная схема ЦАП(рис.з). Устройство имеет два цифровых входа: коаксиальный и оптический. Из коаксиального входа S/PDIFINPUTцифровой аудио-поток поступает через развязывающий трансформатор Т1 и конденсатор С47 на вход RXP0 (вывод 4) микросхемы декодера U9 CS8416, из оптического – через микросхему опто-приемника U10 и конденсатор С46 на вход RXP1(вывод 3) микросхемы U9. Таким образом имеем возможность подключить два источника цифрового аудио-сигнала. Входы  RXP2 и RXP3 не используются и заземлены на корпус с помощью джамперов JP11 и JP12 (если вдруг входов окажется мало, то к ним аналогичным образом можно подключить еще два источника цифрового аудио-сигнала через развязывающий трансформатор или опто-приемник). Выбор цифрового входа осуществляется с помощью джамперов JP5 и JP6 (см. таблицу 1 ниже. В принципе, это не есть гуд, так как если устройство будет упаковано в корпус, то возникнут определенные неудобства с переключением входов. В таком случае или выводить джамперы на заднюю стенку, или пользоватся только одним входом. Пока оставил как есть).

Микросхема U9 CS8416 имеет последовательный цифровой выход аудио и широкие возможности управления как программно (по шине I2C) так и аппаратно, с помощью джамперов, подключенных к определенным ножкам микросхемы.     


Рис.3 Принципиальная схема ЦАП

В данном случае реализован аппаратный метод управления. Для этого 26 ножка SDOUT микросхемы подключена через резистор R38 на корпус. В этом режиме функции чипа ограничены, но зато не требуется подключения внешнего управляющего контроллера. Микросхема IC2 - это супервизор питания для микросхемы декодера. С выхода микросхемы преобразованный цифровой аудио-поток через резисторы R27-R30 поступает в шину и, далее, в микросхему ЦАП ІС1, при этом имеется возможность выбрать джамперами JP8 и JP10 один из четырех форматов: 24-bit I2S, 24-bit right-justified, 24-bit, left-justified, Direct AES3. Джамперы JP1-JP4 служат для конфигурирования микросхемы ЦАП. С выхода ЦАП сигналы левого и правого каналов через преобразователи ток/напряжение на резисторах R7-R10 приходят на входы малошумящего операционного усилителя TL072 (U5)и далее, через токоограничивающие резисторы R19, R20 – на аудио-выход ЦАП.

Схема питается от блока питания, показанного на рис.4

                                     Рис.4 Блок питания ЦАП

 

Блок питания построен с применением маломощных стабилизаторов с малым падением напряжения серии LE00 от ST.  Стабилизаторы U6, U7, U8 питают микросхему декодера, U1, U2 – микросхему ЦАП, U3, U4 – операционный усилитель.

Этот ЦАП был собран исключительно ради эксперимента и для того, чтоб услышать как оно звучит (о прослушивании и впечатлениях ниже). Один мой коллега, услышав звук, издаваемый этим устройством, загорелся желанием собрать себе такой же, но чипа PCM1794 так и не удалось найти в продаже – только под заказ, и только с бешеными накрутками (в одном интернет-магазине цена под заказ была в районе  80$). Но не беда – в свободной продаже нашелся чип WM8740 от Wolfson – это также 24-битный ЦАП с частотой дискретизации до 192кГц, и почти на порядок дешевле. Эта микросхема успешно состыковалась с входной частью предыдущей схемы, в итоге имеем еще одну схему ЦАП:

Сборка и настройка

Оба ЦАП выполнены на печатных платах из двухстороннего стеклотекстолита – на одной стороне дорожки, на второй оставляем слой фольги в качестве экрана и соединяем его с общим проводом.


(Здесь на рисунках ПП видны артефакты преобразования – это результат вытягивания рисунка ПП из KiCad. В самом проекте KiCad файлы ПП нормальные)

Монтаж выполняем в такой последовательности: сначала собираем источники питания – впаиваем все диодные мосты, фильтрующие конденсаторы, стабилизаторы. Вместо стабилизаторов серии LE00 можно использовать стабилизаторы серий L78Lxx, UA78Lxx. Затем подключаем сетевой трансформатор. Трансформатор используется тороидальный мощностью 6 -10 Вт с напряжениями на вторичных обмотках 9В и 12Вх2 (Я когда заказывал эти трансформаторы – подходящего по мощности и напряжениям в наличии не оказалось. Пришлось заказывать два меньшей мощности и перематывать вторички на нужное напряжение. Это, кстати самая дорогостояща деталь в этой конструкции).

 

Далее включаем в сеть и проверяем напряжения на стабилизаторах согласно схеме. Если нет спецэффектов и все напряжения в норме, двигаемся дальше (спецэффекты могут быть, если неправильно впаять 79L12 – у них расположение выводов отличается от 78хх).

Собираем входную часть – впаиваем микросхему декодера CS8416 с обвязкой, входные цепи – входной трансформатор, оптический приемник с соответствующими элементами. Тут нужно сказать несколько слов о трансформаторе и оптическом приемнике.  Погуглив примененные в (1) эти изделия, понял что приобрести их не удастся. Только под заказ и только по зверским ценам. Будем применять то, что удалось найти. Входной трансформатор был выдран из какой-то ВЧ платы made in USSR. Параметры его не определялись – был впаян как есть. Ориентировочно – это ферритовое кольцо типоразмера 10х6х6, скорее всего из ВЧ феррита. На нем намотаны две обмотки проводом 0,1мм в шелковой изоляции в количестве 15 – 20 витков каждая. Оптический приемник ищется в Интернет-магазинах по кодовому названию GQ-04 и стоит в районе 2$. Если вы попытаетесь найти какой-либо даташит на это произведение китайской промышленности, и даже если вам это удастся – не верьте! Во всем, что мне удалось найти неправильно указано расположение и цоколевка выводов, причем во всех по разному. Методом великого Научного Тыка было определено правильное подключение, - оно нарисовано во второй схеме ЦАП.       

Согласно таблице конфигурируем перемычками микросхему декодера:

Цифровые входы

RXSEL1

RXSEL0

Вход

0

0

RXP0 – электрический

0

1

RXP1 – оптический

1

0

RXP2 – дополнительный

1

1

RXP3 – дополнительный

Формат выходных данных

SFSEL1

SFSEL1

Формат

0

0

24-bit, left-justified

0

1

24-bit, I2S *

1

0

24-bit, right-justified

1

1

Direct AES3

System clock RMCK (SCK)

RMCK

Частота

0

256*fs

1

128*fs

Phase Detector Update Rate selection

PDUR

PDUR

0

Normal

1

Higher

Внимательно смотрим под линзой нет ли замыканий между контактами микросхемы, тщательно отмываем остатки флюса в районе ее установки. Затем подключаем нашу наполовину собранную плату к какому-либо источнику S/PDIF. У меня таким оказался китайский DVD-плеер. Можно подключать сразу два входа одновременно, электрический и оптический – они переключаются перемычками RXSEL1, RXSEL0. Подаем питания на плату. Если все правильно сделано должен гореть светодиод Power, а  Error должен потухнуть. Если горит Error, то ищем плохой контакт в соединительном кабеле (входы очень чувствительны  и при любом некачественном/плохом контакте получим Error), или еще раз внимательно смотрим таблицу. Также можно получить Error, если неправильно выставлена частота перемычкой RMCK. Можно потыкать осциллографом в некоторые точки:

Вот так выглядит  S/PDIF после трансформатора:

А такую картину можно наблюдать на выходной шине:

Заключительным этапом сборки является установка на плату микросхемы ЦАП и операционного усилителя с соответствующей обвязкой. РСМ1794 из первой схемы также требует конфигурации согласно таблице:

Пин, джампер

Аудио формат

MONO

CHSL

FMT1

FMT0

Формат

Стерео/моно

0

0

0

0

I2S

стерео

0

0

0

1

Left-justified

стерео

0

0

1

0

Right-justified 16bit

стерео

0

0

1

1

Right-justified 24bit

стерео

0

1

0

0

I2S /Slow

стерео

0

1

0

1

Left-justified /Slow

стерео

0

1

1

0

Right-justified 16bit/Slow

стерео

0

1

1

1

Digital filter bypass

моно

1

0

0

0

I2S

моно, левый

1

0

0

1

Left-justified

моно, левый

1

0

1

0

Right-justified 16bit

моно, левый

1

0

1

1

Right-justified 24bit

моно, левый

1

1

0

0

I2S

моно, правый

1

1

0

1

Left-justified

моно, правый

1

1

1

0

Right-justified 16bit

моно, правый

1

1

1

1

Right-justified 24bit

моно, правый

 

Как видим из таблицы, данная микросхема имеет широчайшие возможности для построения ЦАП различных конфигураций. Здесь важно установить формат данных такой же как и в микросхеме декодера.

О резисторах R7 – R16. Когда плата уже была собрана и вовсю тестировалась, прочитал в (1) о их качестве и точности:  «They should be high quality carbon resistors». Нее, мы о таких и слыхом  не слыхивали. Впаял обычные выводные миниатюрные. Их нужно попарно подбирать с одинаковыми номиналами, однако этого делать тоже не стал. Электролитические конденсаторы, кроме тех, что в фильтре блока питания – танталовые SMD, остальные керамические. 

Все, теперь можно подключать к выходу какой-либо усилитель и что-то слушать.

Несколько фото платы:     

Далее нужно было упаковать все это в какой-либо корпус. После недолгих раздумий, выбор пал на валявшийся без дела дохлый DVD-проигрыватель китайского происхождения. Из него было удалено все, оставлен только сетевой кабель и выключатель питания. На задней стенке корпуса имеем уже готовые отверстия для всех необходимых входных и выходных разъемов. С передней панели удалена наклейка с надписями. Сама панель и задняя стенка корпуса обтянута с помощью утюга декоративной самоклеящейся фактурной пленкой «под кожу».


Так, как органов управления никаких нет, на передней панели будут только два светодиода: «Power» - зеленого цвета свечения и «Error» - красного цвета. А чтоб панель не выглядела скучно добавил кое-какие надписи и подсветку сзади. Для этого распечатал на прозрачной пленке шаблон с надписями. В качестве подсветки – куски светодиодной ленты белого цвета свечения, другой под руками не оказалось. Но белый цвет не понравился, решил поэкспериментировать и напечатать светофильтр. Для этого, опять же, на прозрачной пленке на струйном принтере был напечатан прямоугольник чистого синего цвета. Но плотность оказалась недостаточной. Тогда пропустил еще 2 раза – как раз в самый раз. На фото компоненты передней панели:

Подсветка смонтирована на куске стеклотекстолита: с одной стороны приклеиваем светодиодные ленты, с другой – монтируем обычный стабилизатор на 7812 для ее питания. Стабилизатор подключается к отдельной обмотке трансформатора питания.

Порядок сборки передней панели такой: с задней стороны панели прикручивается на стойках на некотором удалении (1,5 см) плата с подсветкой, с передней стороны сначала устанавливаем кусок белой офисной бумаги в размер, для рассеивания света от светодиодов, затем светофильтр, шаблон с надписями и прижимаем все это также вырезанным по месту куском оргстекла толщиной 1,5 – 2 мм. с помощью тоненьких болтиков (М2, М2,5). Для пущей важности, и чтоб головки винтов не портили вид, заклеиваем оргстекло зеркальной пленкой, которой обычно любители лютого автотюнинга заклеивают стекла в своих пепелацах.

Вот как это выглядит в выключенном состоянии:

А так во включенном:

И еще несколько фото (все фото кликабельны):





О прослушивании

В качестве источника сигнала использовался DVD - проигрыватель Pioneer DVD9000 (хотя его внутренности заставляют усомнится в «Пионеристости»). Его фишка в том, что он имеет встроенный 10-ти полосный эквалайзер. В качестве усилителя сначала подключил 2.1 акустику  4U – 30Вт саб. + 15Вт сателлиты.

Если честно, то в течении часа просто сидел и слушал, причем все подряд – от классики до откровенной попсы, а Nightwish вообще порвал. Сразу вспомнился звук от вертушки Вега – 006 Hi-fi, на которой отец вертел Boney-M и Песняров. Хорошо знакомые композиции зазвучали совершенно по-новому, чувствуется колоссальный подъем высоких и средних частот и эффект присутствия – как будто прямо на живом концерте. Лучше всего звучат простые оригинальные CD-диски в формате cda, чуть хуже - mp3 (хотя mp3 бывает разное – если правильно закодировано, то разницы почти не чувствуется). Затем прослушивание переместилось к коллеге, который аудио-фил от мозга до костей и цифровые источники звука для него не существуют – только пластинки и катушки, а усилитель – только ламповый. Подключили ЦАП к самодельному ламповому усилителю, акустика также самодельная, шарообразная, источник сигнала все тот же DVD-плеер. Удивлению коллеги не было предела – как же так, разве может цифра звучать так же, как и пластинка??? Он все слушал, сравнивал звук с вертушки, затем с катушечного магнитофона, затем с ЦАП-а, потом в обратном порядке – это дело затянулось далеко за полночь. Особенно удивился, когда воткнули в DVD оригинальный диск Pink Floyd, привезенный кем-то когда-то из Англии, и от басов начала сыпаться пыль с ковров.  В итоге вердикт аудио-фила таков (он все-таки не изменил своим принципам): 1 место – пластинка, 2-е – катушка, 3-е – ЦАП, все остальные источники цифрового звука забракованы. Ну а мои, не аудиофильские, но любящие качественный звук, уши разницы практически не чувствуют.

Затем пришла очередь вводить, так сказать, сей девайс в эксплуатацию. Использовать DVD в качестве источника звука экономически не выгодно: никаких денег не хватит постоянно покупать оригинальные диски или болванки для нарезания музыки (к слову, даже нарезанная с оригинального диска копия звучит хуже, чем оригинал). Поэтому было решено подключить ЦАП к ПК. Сейчас можно качать из интернетов огромное количество качественной музыки в lossless формате. До этого в моем ПК стояла звуковая карта Creative SB Audigy 7.1SE, и качество звука, издаваемого из нее, меня вполне устраивало (хотя на малых громкостях прослушивались шумы от винчестеров и куллеров), пока не услышал звук из ЦАП. Попытка подключить ЦАП к цифровому выходу этой карты завершилась неудачей. Как выяснилось, Creative подмешивает к чистому S/PDIF какую-то «отсебятину» (хорошо просматривается осциллографом) и расшифровать этот поток могут только ЦАП фирмы Creative.  Тут же была извлечена из закоулков на свет божий старая сетевая карта (собственно от нее понадобились только планка и разъем) и превращена в S/PDIF-планку:

Разъем нужно подключить экранированным проводом к контактам S/PDIF на материнской плате. Некоторые модели материнок могут иметь уже готовый такой разъем. В звуковом драйвере нужно найти цифровой выход и включить его. Все, теперь можно подключать ЦАП к ПК и наслаждаться качественным звуком. Из  плееров лучше всего воспроизводит Foobar2000, затем AIMP3 и неожиданно удивил качеством воспроизведения стандартный проигрыватель Windows.

На этом все.

И еще раз поздравляю РадиоКот с 7-м ДНЕМ РОЖДЕНИЯ!

Ресурсы:

 

  1. 1.      https://pavouk.org
  2. 2.      Качественный звук сегодня – это просто, Ю.Ф. Авраменко, «МК- Пресс», Киев, 2007г.

2 Холодные схемы инвертора на 50 Вт для студентов и любителей

Схема инвертора на 50 Вт может показаться довольно тривиальной, но она может служить для вас некоторым полезным целям. На открытом воздухе этот небольшой электростанции можно использовать для управления небольшими электронными гаджетами, паяльником, настольными радиоприемниками, лампами накаливания, вентиляторами и т. Д.

Давайте изучим 2 самодельных схемы инвертора на 50 Вт, начиная с краткого описания принципиальной схемы. и его функционирование:

Дизайн № 1: Как это работает

Первую схему мощностью 50 Вт можно понять по следующим пунктам:

Ссылаясь на рисунок, транзисторы T1 и T2 вместе с другими R1, R2, R3 R4, C1 и C2 вместе образуют простой нестабильный мультивибратор (AMV).

Схема транзисторного мультивибратора в основном состоит из двух симметричных полукаскадов, здесь они образованы левым и правым транзисторными каскадами, которые проводят в тандеме, или, проще говоря, левый и правый каскады проводят попеременно в виде постоянного «Движение», генерирующее непрерывное действие флип-флоп.

Вышеупомянутое действие отвечает за создание необходимых колебаний для нашей схемы инвертора. Частота колебаний прямо пропорциональна номиналам конденсаторов и / или резисторов на базе каждого транзистора.

Уменьшение номиналов конденсаторов увеличивает частоту, а увеличение номиналов резисторов уменьшает частоту и наоборот. Здесь значения выбраны таким образом, чтобы обеспечить стабильную частоту 50 Гц.

Считыватели, желающие изменить частоту до 60 Гц, могут легко сделать это, просто изменив номиналы конденсаторов соответствующим образом.

Транзисторы T3 и T4 размещены на двух выходных плечах схемы AMV. Это высокий выигрыш; сильноточные парные транзисторы Дарлингтона, используемые в качестве выходных устройств для данной конфигурации.

Частота от AMV поочередно подается на базу T3 и T4, которые, в свою очередь, переключают вторичную обмотку трансформатора, сбрасывая всю мощность батареи в обмотке трансформатора.

Это приводит к быстрому переключению магнитной индукции на обмотках трансформатора, в результате чего на выходе трансформатора возникает необходимое сетевое напряжение.

Необходимые детали

Вам потребуются следующие компоненты для изготовления этой самодельной инверторной схемы мощностью 50 Вт:

R1, R2 = 100K,

R3, R4 = 330 Ом,

R5, R6 = 470 Ом, 2 Вт,
R7, R8 = 22 Ом, 5 Вт

C1, C2 = 0.22 мкФ, керамический диск,
D1, D2 = 1N5402 или 1N5408

T1, T2 = 8050,

T3, T4 = TIP142,

Печатная плата общего назначения = обрезать до нужного размера, примерно 5 на 4 дюйма должно хватить .

Аккумулятор: 12 вольт, ток не менее 10 Ач.

Трансформатор = 9 - 0 - 9 В, 5 А, выходная обмотка может быть 220 В или 120 В в соответствии со спецификациями вашей страны

Разное: Металлический корпус, держатель предохранителя, соединительные шнуры, розетки и т. Д.

Тестирование и настройка Схема

После того, как вы закончите создание описанной выше простой схемы инвертора, вы можете провести тестирование устройства следующим образом:

Первоначально не подключайте трансформатор или батарею к цепи.

Используйте небольшой источник постоянного тока для питания схемы.
Если все сделано правильно, цепь должна начать колебаться с номинальной частотой 50 Гц.

Вы можете проверить это, соединив выводы частотомера через коллектор T3 или T4 и землю. Плюс прода должен идти на коллектор транзистора.

Если у вас нет частотомера, ничего страшного, вы выполните грубую проверку, подключив контакт наушников к вышеописанным клеммам схемы.Если вы услышите громкий гудящий звук, это будет доказательством того, что ваша схема генерирует требуемую частоту на выходе.

Теперь пришло время подключить аккумулятор и трансформатор к указанной выше схеме.

Подключите все как показано на рисунке.

К выходу трансформатора подключить лампу накаливания мощностью 40 Вт. И включите аккумулятор в цепь.

Лампочка сразу же ярко загорится ... Ваш самодельный инвертор на 50 Вт готов и может использоваться по желанию для питания многих небольших бытовых приборов.

Конструкция № 2: Схема инвертора Mosfet мощностью 50 Вт

В схеме, описанной выше, используются силовые транзисторы, теперь давайте посмотрим, как та же концепция может быть использована с MOSFET-транзисторами, делая конфигурацию намного более простой и простой, но при этом более надежной и мощной.

Остальные каскады почти такие же, в более ранней схеме мы видели использование нестабильного мультивибратора на основе транзистора для генерации необходимых колебаний 50 Гц, здесь мы также включили AMV с транзисторным управлением.

В более ранней схеме была пара транзисторов 2N3055 на выходе, и, как мы все знаем, силовые транзисторы для возбуждения эффективно требуют пропорционального базового привода по отношению к току нагрузки, поскольку транзисторы зависят от привода по току, а не от напряжения, в отличие от МОП-транзисторы.

Это означает, что по мере того, как предлагаемая нагрузка становится выше, сопротивление базы соответствующего выходного транзистора также рассчитывается соответственно для обеспечения оптимального количества тока на базу транзисторов,

В связи с этим обязательством в предыдущей конструкции был добавлен дополнительный драйвер Для улучшения управляющего тока транзисторов 2N3055 пришлось включить каскад.

Однако, когда речь идет о МОП-транзисторах, эта необходимость становится совершенно несущественной.

Как видно на данной диаграмме, каскаду AMV сразу же предшествуют соответствующие затворы МОП-транзисторов, потому что МОП-транзисторы имеют очень высокое входное сопротивление, что означает, что транзисторы AMV не будут излишне нагружены и, следовательно, частота из AMV не будет искажен за счет интеграции силовых устройств.

Поочередно переключаются МОП-транзисторы, которые, в свою очередь, переключают напряжение / ток батареи во вторичной обмотке трансформатора.

Выход трансформатора насыщается, обеспечивая ожидаемое напряжение 220 В на подключенные нагрузки.

Список деталей

R1, R2 = 27K,
R3, R4 = 220 Ом,
C1, C2 = 0,47 мкФ / 100 В, металлизированный
T1, T2 = BC547,
T3, T4 = любой МОП-транзистор 30 В, 10 А, N -канал, или пара IRF540
диодов = 1N5402, или любой выпрямительный диод на 3 А

Mosfet: IRF540

Трансформатор = 9-0-9 В, 8 А
Батарея = 12 В, 10 Ач

Видео, показывающее Процесс тестирования схемы инвертора мощностью 50 Вт:

О Swagatam

Я инженер-электронщик (dipIETE), любитель, изобретатель, разработчик схем / печатных плат, производитель.Я также являюсь основателем веб-сайта: https://www.homemade-circuits.com/, где я люблю делиться своими инновационными идеями и руководствами по схемам.
Если у вас есть какой-либо вопрос, связанный со схемой, вы можете взаимодействовать с ним через комментарии, я буду очень рад помочь!

.

Объяснение 3 цепей переключателя с активацией звуком

В сообщении подробно описаны 3 простые цепи переключателя с активацией со звуком, которые можно использовать в качестве модуля для любой системы, которая может быть назначена для срабатывания по определению какого-либо уровня звукового давления. Или просто приложения, такие как голос сработала сигнализация охранной цепи.

1) Circuit Objective

Используя эту базовую конструкцию переключателя, активируемого звуком, переключение системы с помощью звукового импульса может быть очень эффективным не только для робота, но и для некоторого вида домашней автоматизации.В качестве иллюстрации это может быть звуковая лампочка, реагирующая на стук в входную дверь.

Освещение будет немедленно выключено через несколько секунд. Необязательная реализация - система безопасности, когда кто-то пытается взломать входную дверь или испортить вещь, можно ожидать, что лампочка загорится, указывая на то, что кто-то незваный находится в вашем доме.

Схема может работать от любого источника питания 5-12 В постоянного тока, если используется реле с соответствующим напряжением катушки.

Демонстрация видео

Как это работает

Как только вы впервые сопоставите напряжение источника со звуковой активированной схемой переключателя, реле, вероятно, будет активировано из-за удара конденсатора C2.

Вы должны подождать пару секунд, чтобы реле отключилось. Можно максимизировать или минимизировать временные рамки «включения», изменив uF C2.

Чем больше мкФ, тем больше диапазон "включенного", и наоборот.Однако вы не должны использовать значение, превышающее 47 мкФ.

Резистор смещения R1 в значительной степени определяет уровень чувствительности микрофона. Электретный микрофон обычно имеет только один центральный полевой транзистор внутри, для работы которого требуется напряжение смещения. Наилучшую степень смещения для реакции на звук или уровень шума необходимо определить экспериментальным путем.

Все соответствующие и полезные меры предосторожности в отношении электронной защиты необходимо распознавать каждый раз при подключении нагрузок с питанием от сети к контактам реле.

Список деталей

  • R1 = 5k6
  • R2 = 47k
  • R3 = 3M3
  • R4 = 33K
  • R5 = 330 Ом
  • R6 = 2K2
  • C1 = 0,1 мкФ
  • C2 = 4,7 мкФ / 25 В
  • T1, T2 = BC547
  • T3 = 2N2907
  • D1 = 1N4007
  • Реле = напряжение катушки в соответствии с напряжением питания и номинал контактов в соответствии со спецификациями нагрузки
  • Mic = электретный конденсатор MIC.

Приложения

Концепция может быть использована в качестве светодиодного освещения с активацией вибрации в системах записи со звуком.Его также можно использовать в качестве звукового переключаемого контура освещения в спальне.

2) Активируемый звуком переключатель с настраиваемой частотой звука

Следующий проект ниже объясняет простую и точную систему дистанционного управления с помощью звуковой вибрации, которая будет работать на определенной звуковой частоте. Таким образом, он полностью защищен от ошибок, поскольку его не будут беспокоить другие нежелательные звуки или шум.

Идею запросил г-н Шародж Альхасн.

Схема звукового датчика

На рисунке показана схема схемы звукового детектора, которая может быть эффективно преобразована в пульт дистанционного управления, запускаемый с помощью трубки звукового генератора.

Мы уже много узнали об этом замечательном частотном декодере LM567 IC . ИС будет синхронизироваться с любой частотой, которая подается на ее вход и которая точно соответствует частоте, установленной на ее контактах 5 и 6 через соответствующие компоненты ПДУ.

Формула для определения частоты фиксации на контакте 5/6 может быть рассчитана по следующей формуле:

F = 1 / R3xC2 ,

, где C - в фарадах, R - в омах, а F - в Гц.

Здесь установлено около 2 кГц.

Вывод 3 - это вход ИС, который отслеживает, реагирует и блокирует частоту, которая может достигать значения 2 кГц.

Как только IC обнаруживает это, она выдает нулевую логику или мгновенный низкий уровень на своем выходном контакте 8.

Этот низкий уровень на выводе 8 сохраняется, пока частота на входном выводе остается активной, и становится высоким, как только его убирают.

Принципиальная схема

В обсуждаемой схеме дистанционного управления, запускаемой по звуку, микроконтроллер MiC настроен на выводе 3 ИС.

Внешняя согласованная частота (2 кГц) в виде слышимого звука или свиста направлена ​​в сторону микрофона так, что звук попадает в микрофонный свет.

Микрофон преобразует звук в электрические импульсы, соответствующие принятой частоте на соответствующем входном контакте ИС.

Микросхема немедленно подтверждает соответствие данных и устанавливает на выходе низкий уровень для необходимых действий.

Выход может быть напрямую связан с реле, если требуется только кратковременное переключение или только на время, пока вход активен.

Для включения / выключения то же самое может быть сконфигурировано со схемой FLIP-FLOP .

Цепь удаленного передатчика, активируемая звуком

Следующая схема может использоваться для генерации звуковой частоты для описанной выше схемы звукового удаленного приемника.

Схема основана на простой концепции AMV с использованием нескольких обычных транзисторов и некоторых других пассивных компонентов.

Частота этой схемы передатчика должна быть сначала установлена ​​равной частоте согласования приемников, которая рассчитывается как 2 кГц.Это можно сделать, соответствующим образом отрегулировав предустановку 47k и одновременно отслеживая реакцию фиксации от приемника.

Приложения

Вышеупомянутый проект, в котором используется надежная уникальная частота для срабатывания звука, может быть специально для удаленных замков в автомобилях, домашних дверях или сейфах для ювелирных магазинов, офисных входов и т. Д.

3) Триггер со звуком с использованием пьезо

До сих пор мы узнали о применении включения / выключения с использованием генерации шума, теперь давайте посмотрим, как то же самое можно использовать для запуска тревоги при обнаружении шума или звука.

Простая звуковая сигнальная цепь - это устройство, которое используется для включения сигнализации при обнаружении звуковой вибрации. Чувствительность блока устанавливается внешне в соответствии с требованиями пользователя.

Схема, обсуждаемая в этой статье, может быть реализована для вышеупомянутой цели или просто как устройство безопасности для обнаружения вторжения. Например, его можно установить в автомобиле для обнаружения возможного вторжения или взлома.

Глядя на принципиальную схему, мы видим, что в ней используются только транзисторы, и поэтому даже новичку становится очень легко понять и создать систему в домашних условиях.

Как это работает

В основном вся схема состоит из двух усилителей малых сигналов, которые соединены последовательно для удвоения чувствительной мощности.

T1, T2 вместе с соответствующими резисторами становится первым каскадом усилителя малых сигналов.

Введение резистора 100 кОм между эмиттером T2 и базой T1 играет важную роль в обеспечении высокой стабильности каскада усилителя из-за петли обратной связи, подключенной от выхода к входу каскада.

Вход T2 подключен к пьезопреобразователю, который здесь используется в качестве датчика.

Звуковые сигналы, попадающие на поверхность пьезопреобразователя, эффективно преобразуются в крошечные электрические импульсы, которые усиливаются усилителями, состоящими из T1 и T2, до определенного более высокого уровня.

Этот усиленный сигнал, который становится доступным на коллекторе T2, подается на базу PNP-транзистора T3 с высоким коэффициентом усиления через конденсатор связи емкостью 47 мкФ.

T3 дополнительно усиливает сигналы до еще более высоких уровней.

Тем не менее, сигналы все еще недостаточно сильны и не могут улавливать мельчайшие звуковые колебания, которые, вероятно, могут исходить от физического контакта человека с конкретным телом.

Следующий каскад, который является копией первого каскада, состоит из транзисторов Т4 и Т5.

Усиленные сигналы, генерируемые на коллекторе T3, далее передаются на вышеупомянутый этап для окончательной обработки.

T4 и T5 обеспечивают усиление сигналов до требуемых пределов в соответствии с ожиданиями устройств.

Если пьезоэлемент прикреплен, например, к двери, даже легкий удар по двери будет легко обнаружен, и сигнализация, подключенная к T5, станет активной.

Конденсатор 10 мкФ на предустановке 10K поддерживает активацию сигнала тревоги в течение нескольких секунд, его значение может быть увеличено для увеличения указанной выше задержки звукового сигнала.

Обсуждаемая звуковая сигнализация будет работать с любым источником питания в диапазоне от 6 до 12, однако, если сигнализация является мощной, может потребоваться соответствующий выбор тока.

Предустановка может использоваться для настройки чувствительности цепи.

Принципиальная схема

Для датчика лучше всего подойдет пьезоэлектрический преобразователь 27 мм, на следующем рисунке показано изображение этого устройства:

Приложения

Переключатель, приводимый в действие звуковой вибрацией, как описано выше, выглядит подходящим для создания сигнала тревоги или сирены в ответ на звуковые колебания, поэтому их можно установить под ковриками или закрепить на дверях в качестве устройств аварийной сигнализации.

Каждый раз, когда злоумышленник или вор пытается проникнуть в зону, наступая на коврик или открывая дверь, звук активирует сигнал тревоги, позволяя пользователю и соседям предупредить о взломе.

О компании Swagatam

Я инженер-электронщик (dipIETE), любитель, изобретатель, разработчик схем / печатных плат, производитель. Я также являюсь основателем веб-сайта: https://www.homemade-circuits.com/, где я люблю делиться своими инновационными идеями и руководствами по схемам.
Если у вас есть запрос, связанный со схемой, вы можете взаимодействовать с ним через комментарии, я буду очень рад помочь!

.

Таблица цифро-аналогового преобразования - Цифровые схемы

  • Сетевые сайты:
    • Последний
    • Новости
    • Технические статьи
    • Последний
    • Проектов
    • Образование
    • Последний
    • Новости
    • Технические статьи
    • Обзор рынка
    • Образование
    • Последний
    • Новости
    • Мнение
    • Интервью
    • Особенности продукта
    • Исследования
    • Форумы
  • Авторизоваться
  • Присоединиться
    • Авторизоваться
    • Присоединиться к AAC
    • Или войдите с помощью

      • Facebook
      • Google

.Описание усилителя

OCL | Проекты самодельных схем

В области аудиоусилителей OCL означает Output Capacitor-less Amplifier design.

Как это работает

В топологии или конфигурации усилителя этого типа OCL выходной каскад мощности напрямую связан с предыдущим каскадом драйвера без разделительных конденсаторов.

На следующем рисунке показан типичный выходной каскад усилителя OCL, как видно, базы силовых BJT VT9 / VT10 напрямую связаны с каскадом VT7, VT8 BJT, и то же самое можно увидеть с более ранним каскадом, в котором нет конденсаторов. задействованы для указанных муфт.

Пример схемы

Хотя может быть много версий усилителей OCL, в основном в конструкциях OCL широко используются выходные конфигурации двухтактного типа. как показано выше.

Преимущества

Конфигурация OCL может стать популярной из-за некоторых явных преимуществ, которыми она обладает по сравнению с другими формами топологий усилителей. Об основных характеристиках можно узнать из следующих пунктов:

  • Отсутствие конденсаторной связи позволяет устройству стать очень гладким и компактным, а также помогает сделать конструкцию очень рентабельной.
  • Конструкция OCL обеспечивает повышенную устойчивость к так называемым «колебаниям моторной лодки» в усилителях.
  • Конструкция также позволяет устройству обеспечивать высокую выходную мощность даже при более низких входных звуковых частотах или источниках постоянного тока.
Недостатки

Хотя усилители OCL имеют несколько больших преимуществ, они могут иметь несколько заметных недостатков, как показано ниже:

  • Силовые устройства демонстрируют тенденцию к рассеиванию значительного количества энергии.
  • В усилителях, где точки смещения плохо контролируются, усилитель OCL может передавать содержимое постоянного тока в громкоговорители, вызывая нагрев громкоговорителя.
О компании Swagatam

Я инженер-электронщик (dipIETE), любитель, изобретатель, разработчик схем / печатных плат, производитель. Я также являюсь основателем веб-сайта: https://www.homemade-circuits.com/, где я люблю делиться своими инновационными идеями и руководствами по схемам.
Если у вас есть какие-либо вопросы, связанные со схемами, вы можете взаимодействовать с ними через комментарии, я буду очень рад помочь!

.

Смотрите также