Вход на сайт

Зарегистрировавшись на сайте Вы сможете добавлять свои материалы






Самодельный блок питания с защитой от короткого замыкания


Простой маломощный БП с защитой от КЗ, на старой элементной базе

Блок питания появился на свет как некая гуманитарная помощь знакомому школьнику-семикласснику, для направления его внутренней энергии в хорошее, полезное русло. Таким стабилизированным и регулируемым источником можно запитывать несколько подаренных электро- и радио-конструкторов, первые несложные схемы, которые мы, я надеюсь, соберем. В дальнейшем, при необходимости БП можно будет усовершенствовать – используя корпус, измерители, радиатор, несложно будет собрать более мощный прибор с лучшими параметрами. Пространство внутри вполне это позволяет.

Итак. Блок питания собран по классической схеме, выпрямитель – источник слаботочного стабилизированного напряжения на стабилитроне, эмиттерный повторитель-регулятор на составном транзисторе. Узел защиты от КЗ собран на транзисторе V6, он закрывает регулирующий транзистор при замыкании выходных клемм, в таком состоянии прибор может находиться длительное время. Существует более подробное описание работы схемы, список элементов для замены приведенных.

Блок питания обеспечивает регулируемое стабилизированное напряжение 0,5…12 В с максимальным током 400 мА. Элементная база устройства – сугубо дискретные элементы, германиевые транзисторы старых серий. При определении со схемотехникой блока, все элементы мгновенно и без труда нашлись в коробках и банках, параметры тоже устроили. Решено было не противиться воле провидения.


Главные факторы в конструкции нынешней, применительно к назначению – небольшая мощность, небольшое выходное напряжение, регулируемость, индикация напряжения, защита от КЗ. Кроме того должен быть удобный корпус, безопасное исполнение. Чтобы никаких накрученных проводков на вилку настольной лампы (в пол-голоса) и как только жив остался…

По сравнению с исходной схемой, стрелочный вольтметр заменен на цифровой китайский модуль-измеритель напряжения и тока – не капли не жалко, а ребенку радость. Кроме прочего в голове лучше уложится зависимость потребляемого тока от напряжения, будет видно как напряжение просаживается на относительно мощной нагрузке, напряжение на конкретной нагрузке можно установить с учетом этой просадки (по сравнению со шкалой под ручкой R8) и т.д. Словом, в учебно-наглядных целях. Единственный минус – пришлось озаботиться личным микро-БП для измерителя, впрочем, он допускает широкий диапазон напряжений для питания и удалось легко подобрать ему старый исправный сетевой адаптер-зарядку для мобильного телефона. При этом, индикаторной неоновой лампой с токоограничительным резистором можно смело манкировать – светящиеся цифры измерителя преотлично их заменят.

К делу.

Что было использовано для работы.

Набор инструмента для электромонтажа, набор некрупного слесарного инструмента.

Первым делом подобрал элементы, привел в порядок их выводы, проверил на тестере элементов. К слову, транзисторы вроде П213 тестер игнорирует, проверять его пришлось старым добрым способом – попереходно, тестером.


В транзисторе П213 металлический, прижимаемый к радиатору корпус соединен с выводом его коллектора – чтобы не изолировать от металлической коробки блока весь радиатор, изолировать пришлось сам транзистор. К счастью, нашлась специальная слюдяная прокладка, к несчастью, не оказалось специальных винтиков с изоляторами, пришлось выкручиваться. Момент удалось разрешить фланцем-изолятором. Выпилил его из нетолстого текстолита ювелирным лобзиком с крупнозубой (№0) пилкой. Как и при использовании всех слоистых пластиков, детали из текстолита следует красить (лакировать) – они весьма пористы и как следствие, гигроскопичны.

Собрал прибор навесным манером для проверки работоспособности. Собственно, элементов в схеме немного, значительная их часть крупные, установочные. Их выводы удобно использовать как контактные площадки. Кроме них конструкция внутренней части блока не предполагает дополнительных точек крепления. Все мелкие элементы сгруппированы в две части так, чтобы между ними было меньше соединительных проводов. Первая часть имеет опору – крупную оксидную емкость (С1), вторая – ножки регулирующего транзистора на радиаторе.


Короткие выводы элементов при соединении пайкой образуют жесткую пространственную конструкцию.

Убедившись в работоспособности макета, приступил к самому сложному – корпусу. Он был изготовлен из листового металла способом гнутья, частично пайки и состоит из двух П-образных частей. Нижняя – поддон и торцевые стенки сделаны из оцинкованной стали (легко паять), крышка – из тонкого алюминиевого листа (старый кровельный лист). Электрохимический ряд напряжений металлов вполне допускает их механическое соединение.


Нижняя часть (поддон) выгнут из простой прямоугольной заготовки. Торцевые стенки припаиваются к нему и усиливаются (также пайкой) пластинчатыми раскосами. Конструкция несколько сложная, зато дающая возможность без помех орудовать ювелирным лобзиком при изготовлении фигурных проемов под установочные элементы.


Разметку торцевых панелей делал на манер накернивания печатных плат – распечатал вычерченный в КАДе эскиз в формате 1:1, вырезал ему лепестки, обернул вокруг заготовки железки и закрепил (при необходимости) липкой лентой. Разметку прямоугольных проемов перенес слегка накернив их углы, круглых – их центры. Чертилкой или тонко отточенным карандашиком соединил прямоугольники, в центры ставил ножку циркуля-балеринки (для малых окружностей). Дополнительные загогулины вырисовывал по месту, примеряя к детали.


Ряд установочных элементов были разукомплектованы или имели небольшие дефекты, поломки, не лишающие впрочем, их работоспособности. Например, для изолированной клеммы «-» не удалось найти гайку-крепеж с мелкошаговой резьбой, пришлось применить пайку и импровизированный изолятор. Клемму общего провода, а здесь это «+» впаял в стенку насмерть.

Выпилив и подогнав проемы для всех установочных элементов, спаял нижнюю часть корпуса – поддон, торцевые стенки, раскосы (зачистить, нанести «кислоту паяльную» (хлористый цинк), лудить; после пайки хорошо промыть водой со щеткой, в воду можно добавить чуток соды).

Некоторые установочные элементы были не рассчитаны на установку в столь тонкую (0,5 мм) панель, пришлось укрепить их термоклеем. Его адгезия к стали здесь неважна, он работает этаким упором на сжатие. Пластиковые части предварительно покорябал острым ножом.


Колодка предохранителя тоже болталась, здесь пришлось выпилить из алюминия (он чуть толще) еще пару утолщительных шайб.

В качестве сетевого трансформатора применен кадровый ТВК-110ЛМ от старого лампового телевизора. Он положен набок, его внешняя обойма припаяна к площадке из оцинкованной стали. Площадка приклепана к поддону БП вытяжными заклепками.

Адаптер-зарядка от старого телефона (БП измерителя) несколько доработана – удалена штатная сетевая вилка, вместо нее наружу выведена пара проводов. Это безопаснее и уменьшает потребное для узла место.

Для установки С1 с обвесом пришлось сделать деталь-крепление. Для нижней площадки использовал выпиленную из окна для измерителя серединку, обойму согнул из узкой пластинки на трубке подходящего диаметра. Разрезная обойма припаяна только в двух точках. Это достаточно прочно и позволяет свободной ее части плотно обжать цилиндрическую деталь – конденсатор. Фиксировать можно пластиковыми ремешками для электромонтажа или даже стальным червячным хомутом (очень осторожно - большое усилие).

Площадка с закрепленным конденсатором приклепана к поддону вытяжными заклепками.



Радиатор с транзистором крепится при помощи двух коротких винтиков, железку пришлось немного поёрзать на бруске с пришпиленной наждачной шкуркой, чтобы выровнять её нижнюю, соприкасающуюся с поддоном часть. Так она стоит ровнее и плотнее. Под винты подложил кузовные (широкие) шайбы, в резьбу капнул лака для застопоривания.




Размеры для развертки крышки вымерял по месту, начертил на отрихтованом листе, вырезал ножницами по металлу. Согнул, притупил острые кромки, разметил и просверлил массив вентиляционных отверстий. Сделал два ряда отверстий и в поддоне, под радиатором, чтобы организовать воздушный поток вокруг него.

Сверяясь с большим мультиметром подрегулировал показания измерительного блока прибора.

Собрал корпус БП, крышку к нижней части приклепал вытяжными заклепками – часто вскрывать ее нет нужды, но при необходимости, заклепки без труда высверливаются.

На дне блока «Моментом» приклеил резиновые ножки, сделал самые необходимые пояснительные надписи «промышленным» стойким лаковым фломастером.


Babay Mazay, июнь, 2020 г.

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

Добавьте эту схему защиты от короткого замыкания в свой источник питания

Ниже объясняется довольно дешевая, но достаточно эффективная схема защиты от короткого замыкания, которую можно использовать для защиты цепи питания

Введение

Блок питания является незаменимым элементом для любой электронной энтузиастов и инженеров, работающих в соответствующей области. Хотя сегодня все мы используем высокотехнологичные блоки питания со встроенной защитой, есть люди, которые до сих пор полагаются на обычные типы блоков питания без средств защиты.

Самый большой враг всех блоков питания - это возможное короткое замыкание, которое может произойти на его выходных клеммах из-за случайного подключения или из-за неисправности подключенной нагрузки.

Существуют различные электронные схемы, которые могут использоваться с блоком питания для проверки этой проблемы, однако эти схемы иногда сами рискуют выйти из строя из-за ограничений многих электрических параметров.

В этой статье был показан очень инновационный способ решения этой проблемы.Одиночное реле используется для обнаружения, а также отключения выхода при соответствующей неисправности.

Работа схемы

Обращаясь к принципиальной схеме, мы видим, что реле подключено непосредственно к выходу источника питания постоянного тока, однако подключение осуществляется через замыкающие контакты реле. Эти контакты также заканчиваются как выход устройства.

N / O означает нормально открытый, это означает, что контакты изначально разомкнуты, что, в свою очередь, удерживает выход отсоединенным от плюса источника питания.

Теперь, когда показанная кнопка нажата на мгновение, замыкающие контакты блокируются, позволяя току течь через катушку реле.

Катушка реле подает питание, замыкая замыкающие контакты, которые, в свою очередь, фиксируются и остаются в этом положении даже после отпускания кнопки.

Релейная защелка сохраняет это фиксированное положение, пока выход используется в нормальных условиях, но в случае короткого замыкания на выходных клеммах может произойти резкое падение напряжения, в тот момент, когда это напряжение упадет ниже уровня катушки. напряжения реле, оно теряет свою удерживающую способность и немедленно размыкает контакты и срабатывает, отключая подачу питания на выход и в ходе этого отключает защелку, предотвращая условия опасности короткого замыкания.

Это приводит реле в исходное состояние и требует сброса для восстановления питания на выходе.

Принципиальная схема защиты источника питания от короткого замыкания показана ниже:

О Swagatam

Я инженер-электронщик (dipIETE), любитель, изобретатель, разработчик схем / печатных плат, производитель. Я также являюсь основателем веб-сайта: https://www.homemade-circuits.com/, где я люблю делиться своими инновационными идеями и руководствами по схемам.
Если у вас есть какие-либо вопросы, связанные со схемой, вы можете общаться с ними через комментарии, я буду очень рад помочь!

.

3 простых схемы ИБП постоянного тока для модема / маршрутизатора

В следующей статье мы обсудим 3 полезных схемы источника бесперебойного питания постоянного тока или схемы ИБП постоянного тока для источников бесперебойного питания с низким постоянным током

Первая идея ниже представляет схему ИБП постоянного тока может использоваться для обеспечения резервного питания модемов или маршрутизаторов во время сбоев в электросети, так что широкополосное / WiFi-соединение никогда не прерывается. Идея была предложена г-ном Галивом.

Технические характеристики

Мне нужна такая схема, как
У меня есть два адаптера постоянного тока на 12 В (600 мА и 2 А).
Когда присутствует входная сеть, с адаптером 600 мА я хочу заряжать аккумулятор (7,5 Ач), а с адаптером 2 А я хочу использовать свой Wi-Fi роутер.
при отключении сети переменного тока аккумулятор будет бесперебойно обеспечивать резервное копирование моего Wi-Fi роутера. Как ИБП.
Модем MY рассчитан на 12 В 2,0 А. Вот почему я хочу использовать два адаптера постоянного тока 12 В.

Конструкция

Два адаптера фактически не требуются для предлагаемого применения. Один адаптер, вероятно, тот, который используется для зарядки аккумулятора ноутбука, также может использоваться для зарядки внешнего аккумулятора.

Глядя на данную принципиальную схему ИБП с модемом постоянного тока, мы можем увидеть простую, но интересную конфигурацию, включающую пару диодов D1, D2 и резистор R1.

Обычно зарядное устройство для ноутбука рассчитано на 18 В, поэтому для зарядки аккумулятора на 12 В его необходимо снизить до 14 В. Это легко сделать с помощью транзисторного стабилитрона.

При наличии сети напряжение на катоде D1 больше положительного, чем на D2, что поддерживает обратное смещение D2. Это позволяет проводить только D1, подавая напряжение с адаптера на модем.

D2 выключается, подключенная батарея начинает получать необходимое зарядное напряжение через R1 и начинает заряжаться в процессе.

В случае выхода из строя сети переменного тока D1 отключается и, следовательно, позволяет D2 проводить, позволяя напряжению батареи мгновенно достигать модема, не вызывая перебоев в сети.

R1 следует выбирать в зависимости от силы тока зарядки подключенного аккумулятора.

Намного лучшая и улучшенная версия вышеупомянутого показана на следующей схеме:

2) Схема повышающего ИБП от 6 до 220 В

Вторая схема объясняет простую схему ИБП с повышающим преобразователем для обеспечения бесперебойного питания спутникового телевидения. телевизионные приставки, чтобы запись в автономном режиме никогда не прерывалась во время отключения электроэнергии.Идея была предложена г-ном Анируддха Мукхерджи.

Технические характеристики

Я энтузиаст, увлекающийся электроникой. Хотя я знаю только основы, я уверен, что вы должны получать сотни писем ежедневно, и я полностью уверен в своей удаче, если это попадет вам в «глаза»

Мое требование:

16 вольт Резервный источник постоянного тока 1 А для моей квартиры Централизованный распределительный щит Tata sky.
Проблема: люди, обслуживающие мою квартиру, не используют резервное копирование (генератор) в дневное время, у меня есть цифровой видеорегистратор Tata sky, который не может записывать, так как происходит потеря сигнала из-за сбоя питания.

Разрешение:

Я подумал о небольшой резервной системе, я купил небольшую схему балласта CFL на 6 вольт и 11 ватт, думая как дешевое альтернативное решение, но то же самое не сработало.

Почему мне нужен источник переменного тока вместо постоянного тока? Я не хочу вмешиваться в их систему и получать штрафы за любые сбои, которые могут возникнуть из-за естественного хода работы.

Не могли бы вы помочь мне с очень простой рентабельной схемой, которая даст мне 220 вольт 20 ватт мощности от 6 вольт 5ач батареи.Если быть точным, 220 вольт от 6-вольтовой батареи, так как я недавно купил 6-вольтную 5-ач батарею . Требуемая выходная мощность составляет менее 20 Вт, характеристики адаптера
:

Выход - 16 вольт 1 ампер
Вход - 240 вольт 0,06 ампер

Я знаю, у вас много работы, но если бы вы могли уделить немного времени и помочь мне с этим, это было бы большим подспорьем. спасибо

Спасибо,
Aniruddha

Конструкция

Поскольку сегодня все электронные системы используют источник питания SMPS, вход не обязательно должен быть переменного тока для питания этого оборудования, скорее эквивалентный или импульсный постоянный ток также становится полезным и работает так же хорошо.

Ссылаясь на диаграмму выше, можно увидеть пару секций, конфигурация IC1 позволяет повысить постоянный ток с напряжением 6 В до гораздо более высокого импульсного постоянного тока 220 В через топологию повышающего преобразователя с использованием IC 555 в нестабильной форме. Крайняя левая аккумуляторная секция обеспечивает переключение с сети на резервную батарею каждый раз, когда цепь обнаруживает сбой питания.

Идея довольно проста и не требует особой проработки.

Как работает схема

IC1 сконфигурирован как нестабильный генератор, который управляет T1 и, следовательно, L1 с одинаковой частотой.

T1 индуцирует полный ток батареи через L1, вызывая на нем пропорционально повышенное напряжение во время периодов выключения T1 (индуцированная обратная ЭДС от L1).

L1 должен быть соответствующим образом рассчитан так, чтобы он генерировал требуемую величину напряжения на показанных клеммах.

Указанные 200 витков ориентировочно рассчитаны и могут потребовать значительных изменений для достижения запланированного 220 В от входного источника питания 6 В.

T2 введен для регулирования выходного напряжения до желаемого безопасного уровня, который здесь составляет 220 В.

Z1, следовательно, должен быть стабилитроном 220 В, который проводит только тогда, когда этот предел превышен, что заставляет T2 проводить и заземлять вывод 5 ИС, останавливая частоту на выводе 3 до нулевого напряжения.

Вышеупомянутый процесс постоянно быстро корректируется, обеспечивая постоянное напряжение 220 В на выходе.

Адаптер, который можно увидеть в крайнем левом углу, используется по двум причинам: во-первых, чтобы гарантировать, что IC1 работает непрерывно и выдает необходимое 220 В для подключенной нагрузки независимо от наличия сети (как и в онлайн-системах ИБП), а также для обеспечения зарядного тока аккумулятора при наличии сетевого напряжения.

Соответствующий транзистор TIP122 предназначен для генерации регулируемого постоянного тока 7 В для аккумулятора, а также для ограничения чрезмерной зарядки аккумулятора.

Использование выключения операционного усилителя

Если вам нужна точная схема, которая будет точно контролировать батарею ИБП постоянного тока и реализовывать требуемые выключения при перезарядке и низком разряде, следующая конструкция может оказаться полезной.

.

Сильноточная бестрансформаторная цепь питания

Простая конфигурация бестрансформаторной цепи питания, представленная ниже, способна обеспечивать высокий ток при любом заданном фиксированном уровне напряжения. Идея, похоже, решила проблему получения высокого тока от емкостных источников питания, которая раньше казалась сложной задачей. Я предполагаю, что я первый, кто это изобрел.

Введение

В этом блоге я обсуждал несколько бестрансформаторных схем питания, которые подходят только для приложений с низким энергопотреблением и имеют тенденцию становиться менее эффективными или бесполезными при сильноточных нагрузках.

В вышеуказанной концепции используются высоковольтные полипропиленовые конденсаторы для понижения сетевого напряжения до необходимого уровня, однако она не может повысить уровни тока в соответствии с любым желаемым конкретным применением.

Хотя, поскольку ток прямо пропорционален реактивному сопротивлению конденсаторов, это означает, что ток можно снять, просто подключив несколько конденсаторов параллельно. Но это создает риск возникновения высоких начальных импульсных токов, которые могут мгновенно разрушить задействованную электронную схему.

Добавление конденсаторов для увеличения тока

Таким образом, добавление конденсаторов может помочь увеличить текущие характеристики таких источников питания, но сначала необходимо позаботиться о коэффициенте перенапряжения, чтобы схема была пригодной для практического использования.

Схема сильноточного бестрансформаторного источника питания, описанная здесь, мы надеемся, эффективно справляется с перенапряжениями, возникающими из-за переходных процессов питания, так что выход становится свободным от опасностей и обеспечивает требуемый источник тока при номинальных уровнях напряжения.

Все в цепи остается таким же, как и ее старый аналог, за исключением включения симистора и стабилитрона, который на самом деле представляет собой ломовую сеть, используемую для заземления всего, что превышает номинальное напряжение.

В этой схеме выход, как мы надеемся, обеспечит стабильное напряжение около 12+ вольт при токе около 500 мА без опасности случайного притока напряжения или тока.

ВНИМАНИЕ: ЦЕПЬ НЕ ИЗОЛИРОВАНА ОТ СЕТИ И ПОЭТОМУ ПРЕДНАЗНАЧЕНА ВЫСОКИЙ РИСК ПОРАЖЕНИЯ ЭЛЕКТРИЧЕСКИМ ТОКОМ, НЕОБХОДИМО ПРИНЯТЬ СООТВЕТСТВУЮЩИЕ МЕРЫ ПРЕДОСТОРОЖНОСТИ.

ОБНОВЛЕНИЕ: В этой бестрансформаторной цепи питания с контролируемым переходом через нуль можно узнать о лучшей и более совершенной конструкции.

Список деталей

  • R1 = 1M, 1 / 4W
  • R2, R3 = 1K, 1 / 4 Вт
  • C1 ---- C5 = 2 мкФ / 400 В PPC, КАЖДЫЙ
  • C6 = 100 мкФ / 25 В
  • Все ДИОДЫ = 1N4007
  • Z1 = 15 В, 1 Вт
  • TRIAC = BT136

Аккуратно нарисованная печатная плата для вышеупомянутого сильноточного бестрансформаторного источника питания можно увидеть ниже, он был разработан Mr.Патрик Брюн, один из ярых последователей этого блога.

Обновление

Более глубокий анализ схемы показал, что симистор сбрасывает значительную величину тока, ограничивая выбросы и контролируя ток.

Подход, используемый в приведенной выше схеме для управления напряжением и выбросом, является отрицательным с точки зрения эффективности.

Чтобы получить желаемые результаты, как предложено в приведенной выше схеме, и без шунтирования драгоценных усилителей, необходимо реализовать схему с прямо противоположным откликом, как показано выше

Интересно, что здесь симистор не настроен на сброс мощности, а он подключен таким образом, что он отключает питание, как только выход достигает указанного безопасного предела напряжения, который определяется каскадом BJT.

Новое обновление:

В модифицированной выше конструкции симистор может не работать должным образом из-за его довольно неудобного расположения. На следующей диаграмме предлагается правильно настроенная версия вышеуказанного, которая, как можно ожидать, будет работать в соответствии с ожиданиями. В этой конструкции мы включили тиристор вместо симистора, поскольку устройство расположено после мостового выпрямителя, и, следовательно, вход имеет форму пульсаций постоянного тока, а не переменного тока.

Улучшение вышеуказанной конструкции:

В вышеупомянутой схеме бестрансформаторного источника питания на базе SCR выход защищен от перенапряжения через SCR, но BC546 не защищен.Чтобы обеспечить полную защиту всей схемы вместе с каскадом драйвера BC546, к каскаду B546 необходимо добавить отдельный каскад запуска с низким энергопотреблением. Измененную конструкцию можно увидеть ниже:

Вышеупомянутую конструкцию можно улучшить, изменив положение SCR, как показано ниже:

До сих пор мы изучили несколько конструкций бестрансформаторных источников питания с сильноточными характеристиками, а также узнали об их различных режимах конфигурации.

Ниже мы пойдем немного дальше и узнаем, как создать схему с переменной версией, используя SCR. Объясненная конструкция не только обеспечивает возможность получения бесступенчатого выходного сигнала, но также имеет защиту от перенапряжения и, следовательно, становится более надежной при использовании предполагаемых функций.

Схему можно понять из следующего описания:

Работа схемы

Левая часть схемы нам хорошо знакома, входной конденсатор вместе с четырьмя диодами и конденсатор фильтра образуют части общего, ненадежная схема бестрансформаторного питания фиксированного напряжения.

Выход из этой секции будет нестабильным, подверженным импульсным токам и относительно опасным для работы чувствительных электронных схем.

.

Смотрите также