Вход на сайт

Зарегистрировавшись на сайте Вы сможете добавлять свои материалы






Самодельный блок питания с регулировкой тока и напряжения


Регулируемый блок питания своими руками

Мастер, описание устройства которого в первой части, задавшись целью сделать блок питания с регулировкой, не стал усложнять себе дело и просто использовал платы, которые лежали без дела. Второй вариант предполагает использование еще более распространенного материала – к обычному блоку была добавлена регулировка, пожалуй, это очень многообещающее по простоте решение при том, что нужные характеристики не будут потеряны и реализовать задумку можно своими руками даже не самому опытному радиолюбителю. В бонус еще два варианта совсем простых схем со всеми подробными объяснениями для начинающих. Итак, на ваш выбор 4 способа.

Блок питания с регулировкой из старой платы компьютера

Stalevik

Расскажем, как сделать регулируемый блок питания из ненужной платы компьютера. Мастер взял плату компьютера и выпилил блок, питающий оперативку.
Так он выглядит.

Определимся, какие детали нужно взять, какие нет, чтобы отрезать то, что нужно, чтобы на плате были все компоненты блока питания. Обычно импульсный блок для подачи тока на компьютер состоит из микросхемы, шим контроллера, ключевых транзисторов, выходного дросселя и выходного конденсатора, входного конденсатора. На плате еще и зачем-то присутствует входной дроссель. Его тоже оставил. Ключевые транзисторы – может быть два, три. Есть посадочное место по 3 транзистор, но в схеме не используется.

Сама микросхема шим контроллера может выглядеть так. Вот она под лупой.

Может выглядеть как квадратик с маленькими выводами со всех сторон. Это типичный шим контроллер на плате ноутбука.


Так выглядит блок питания импульсный на видеокарте.

Точно также выглядит блок питания для процессора. Видим шим контроллер и несколько каналов питания процессора. 3 транзистора в данном случае. Дроссель и конденсатор. Это один канал.
Три транзистора, дроссель, конденсатор – второй канал. 3 канал. И еще два канала для других целей.
Вы знаете как выглядит шим-контроллер, смотрите под лупой его маркировку, ищите в интернете datasheet, скачиваете pdf файл и смотрите схему, чтобы ничего не напутать.
На схеме видим шим-контроллер, но по краям обозначены, пронумерованы выводы.

Обозначаются транзисторы. Это дроссель. Это конденсатор выходной и конденсатор входной. Входное напряжение в диапазоне от 1,5 до 19 вольт, но напряжение питание шим-контроллера должно быть от 5 вольт до 12 вольт. То есть может получиться, что потребуется отдельный источник питания для питания шим-контроллера. Вся обвязка, резисторы и конденсаторы, не пугайтесь. Это не нужно знать. Всё есть на плате, вы не собираете шим-контроллер, а используете готовый. Нужно знать только 2 резистора – они задают выходное напряжение.

Резисторный делитель. Вся его суть в том, чтобы сигнал с выхода уменьшить примерно до 1 вольта и подать на вход шим-контроллера фидбэк – обратная связь. Если вкратце, то изменяя номинал резисторов, можем регулировать выходное напряжение. В показанном случае вместо резистора фидбэк мастер поставил подстроечный резистор на 10 килоом. Этого оказалось достаточным, чтобы регулировать выходное напряжение от 1 вольта до примерно 12 вольт. К сожалению, не на всех шим-контроллерах это возможно. Например, на шим контроллерах процессоров и видеокарт, чтобы была возможность настраивать напряжение, возможность разгона, выходное напряжение сдается программно по несколькоканальной шине. Менять выходное напряжение такого шим контроллера можно разве только перемычками.

Итак, зная как выглядит шим-контроллер, элементы, которые нужны, уже можем выпиливать блок питания. Но делать это нужно аккуратно, так как вокруг шим-контроллера есть дорожки, которые могут понадобиться. Например, можно видеть – дорожка идёт от базы транзистора к шим контроллеру. Её сложно было сохранить, пришлось аккуратно выпиливать плату.

Используя тестер в режиме прозвонки и ориентируясь на схему, припаял провода. Также пользуясь тестером, нашел 6 вывод шим-контроллера и от него прозвонил резисторы обратной связи. Резистор находился рфб, его выпаял и вместо него от выхода припаял подстроечный резистор на 10 килоом, чтобы регулировать выходное напряжение, также путем про звонки выяснил, что питание шим-контроллера напрямую связано со входной линией питания. Это значит, что не получиться подавать на вход больше 12 вольт, чтобы не сжечь шим-контроллер.

Посмотрим, как блок питания выглядит в работе

Припаял штекер для входного напряжения, индикатор напряжения и выходные провода. Подключаем внешнее питание 12 вольт. Загорается индикатор. Уже был настроен на напряжение 9,2 вольта. Попробуем регулировать блок питания отверткой.


Пришло время заценить, на что способен блок питания. Взял деревянный брусок и самодельный проволочный резистор из нихромовой проволоки. Его сопротивление низкое и вместе с щупами тестера составляет 1,7 Ом. Включаем мультиметр в режим амперметра, подключаем его последовательно к резистору. Смотрите, что происходит – резистор накаляется до красна, напряжение на выходе практически не меняется, а ток составляет около 4 ампер.


Раньше мастер уже делал похожие блоки питания. Один вырезан своими руками из платы ноутбука.

Это так называемое дежурное напряжение. Два источника на 3,3 вольта и 5 вольт. Сделал ему на 3d принтере корпус. Также можете посмотреть статью, где делал похожий регулируемый блок питания, тоже вырезал из платы ноутбука (https://electro-repair.livejournal.com/3645.html). Это тоже шим контроллер питания оперативной памяти.

Как сделать регулирующий БП из обычного, от принтера

Пойдет речь о блоке питания принтера canon, струйный. Они много у кого остаются без дела. Это по сути отдельное устройство, в принтере держится на защелке.
Его характеристики: 24 вольта, 0,7 ампера.

Понадобился блок питания для самодельной дрели. Он как раз подходит по мощности. Но есть один нюанс – если его так подключить, на выходе получим всего лишь 7 вольт. Тройной выход, разъёмчик и получим всего лишь 7 вольт. Как получить 24 вольта?
Как получить 24 вольта, не разбирая блок?
Ну самый простой – замкнуть плюс со средним выходом и получим 24 вольта.
Попробуем сделать. Подключаем блок питания в сеть 220. Берем прибор и пытаемся измерить. Подсоединим и видим на выходе 7 вольт.
У него центральный разъем не задействован. Если возьмем и подсоединим к двум одновременно, напряжение видим 24 вольта. Это самый простой способ сделать так, чтобы данный блок питания не разбирая, выдавал 24 вольта.

Необходим самодельный регулятор, чтобы в некоторых пределах можно было регулировать напряжение. От 10 вольт до максимума. Это сделать легко. Что для этого нужно? Для начала вскрыть сам блок питания. Он обычно проклеен. Как вскрыть его, чтобы не повредить корпус. Не надо ничего колупать, поддевать. Берем деревяшку помассивнее либо есть киянка резиновая. Кладем на твердую поверхность и по шву лупим. Клей отходит. Потом по всем сторонам простучали хорошенько. Чудесным образом клей отходит и все раскрывается. Внутри видим блок питания.


Достанем плату. Такие бп легко переделать на нужное напряжение и можно сделать также регулируемый. С обратной стороны, если перевернем, есть регулируемый стабилитрон tl431. С другой стороны увидим средний контакт идет на базу транзистора q51.

Если подаем напряжение, то данный транзистор открывается и на резистивном делителе появляется 2,5 вольта, которые нужно для работы стабилитрона. И на выходе появляется 24 вольта. Это самый простой вариант. Как его завести можно еще – это выбросить транзистор q51 и поставить перемычку вместо резистора r 57 и всё. Когда будем включать, всегда на выходе непрерывно 24 вольта.

Как сделать регулировку?

Можно изменить напряжение, сделать с него 12 вольт. Но в частности мастеру, это не нужно. Нужно сделать регулируемый. Как сделать? Данный транзистор выбрасываем и вместо резистор 57 на 38 килоома поставим регулируемый. Есть старый советский на 3,3 килоома. Можно поставить от 4,7 до 10, что есть. От данного резистора зависить только минимальное напряжение, до которого он сможет опускать его. 3,3 -сильно низко и не нужно. Двигатели планируется поставить на 24 вольта. И как раз от 10 вольт до 24 – нормально. Кому нужно другое напряжение, можно большого сопротивления подстроечный резистор.
Приступим, будем выпаивать. Берём паяльник, фен. Выпаял транзистор и резистор.

Подпаял переменный резистор и попробуем включить. Подал 220 вольт, видим 7 вольт на нашем приборе и начинаем вращать переменный резистор. Напряжение поднялось до 24 вольт и плавно-плавно вращаем, оно падает – 17-15-14 то есть снижается до 7 вольт. В частности установлено на 3,3 ком. И наша переделка оказалась вполне успешной. То есть для целей от 7 до 24 вольт вполне приемлемая регулировка напряжения.


Такой вариант получился. Поставил переменный резистор. Ручку и получился регулируемый блок питания – вполне удобный.

Видео канала “Технарь”.

Такие блоки питания найти в Китае просто. Наткнулся на интересный магазин, который продает б/у блоки питания от разных принтеров, ноутбуков и нетбуков. Они разбирают и продают сами платы, полностью исправные на разные напряжения и токи. Самый большой плюс – это то, что они разбирают фирменную аппаратуру и все блоки питания качественные, с хорошими деталями, во всех есть фильтры.
Фотографии – разные блоки питания, стоят копейки, практически халява.

Простой блок с регулировкой

Простой вариант самодельного устройства для питания приборов с регулировкой. Схема популярная, она распространена в Интернете и показала свою эффективность. Но есть и ограничения, которые показаны на ролике вместе со всеми инструкциями по изготовлению регулированного блока питания.


Самодельный регулированный блок на одном транзисторе

Какой можно сделать самому самый простой регулированный блок питания? Это получится сделать на микросхеме lm317. Она уже сама с собой представляет почти блок питания. На ней можно изготовить как регулируемый по напряжению блок питания, так и потоку. В этом видео уроке показано устройство с регулировкой напряжения. Мастер нашёл несложную схему. Входное напряжение максимальное 40 вольт. Выходное от 1,2 до 37 вольта. Максимальный выходной ток 1,5 ампер.

Скачать схему с платой.

Без теплоотвода, без радиатора максимальная мощность может быть всего 1 ватт. А с радиатором 10 ватт. Список радиодеталей.

Приступаем к сборке

Подключим на выход устройства электронную нагрузку. Посмотрим, насколько хорошо держит ток. Выставляем на минимум. 7,7 вольта, 30 миллиампер.

Всё регулируется. Выставим 3 вольта и добавим ток. На блоке питания выставим ограничения только побольше. Переводим тумблер в верхнее положение. Сейчас 0,5 ампера. Микросхема начал разогреваться. Без теплоотвода делать нечего. Нашёл какую-то пластину, ненадолго, но хватит. Попробуем еще раз. Есть просадка. Но блок работает. Регулировка напряжения идёт. Можем вставить этой схеме зачёт.

Видео Radioblogful. Видеоблог паяльщика.

Регулируемый источник напряжения от 5 до 12 вольт

Продолжая наше руководство по преобразованию блока питания ATX в настольный источник питания, одним очень хорошим дополнением к этому является стабилизатор положительного напряжения LM317T.

LM317T – это регулируемый 3-контактный положительный стабилизатор напряжения, способный подавать различные выходы постоянного напряжения, отличные от источника постоянного напряжения +5 или +12 В, или в качестве переменного выходного напряжения от нескольких вольт до некоторого максимального значения, все с токи около 1,5 ампер.

С помощью небольшого количества дополнительных схем, добавленных к выходу блока питания, мы можем получить настольный источник питания, способный работать в диапазоне фиксированных или переменных напряжений, как положительных, так и отрицательных по своей природе. На самом деле это гораздо проще, чем вы думаете, поскольку трансформатор, выпрямление и сглаживание уже были выполнены БП заранее, и все, что нам нужно сделать, это подключить нашу дополнительную цепь к выходу желтого провода +12 Вольт. Но, во-первых, давайте рассмотрим фиксированное выходное напряжение.

Фиксированный источник питания 9В

В стандартном корпусе TO-220 имеется большое разнообразие трехполюсных регуляторов напряжения, при этом наиболее популярным фиксированным стабилизатором напряжения являются положительные регуляторы серии 78xx, которые варьируются от очень распространенного фиксированного стабилизатора напряжения 7805 +5 В до 7824, + 24V фиксированный регулятор напряжения. Существует также серия фиксированных отрицательных регуляторов напряжения серии 79хх, которые создают дополнительное отрицательное напряжение от -5 до -24 вольт, но в этом уроке мы будем использовать только положительные типы 78хх .

Фиксированный 3-контактный регулятор полезен в приложениях, где не требуется регулируемый выход, что делает выходной источник питания простым, но очень гибким, поскольку выходное напряжение зависит только от выбранного регулятора. Их называют 3-контактными регуляторами напряжения, потому что они имеют только три клеммы для подключения, и это соответственно Вход , Общий и Выход .

Входным напряжением для регулятора будет желтый провод + 12 В от блока питания (или отдельного источника питания трансформатора), который подключается между входной и общей клеммами. Стабилизированный +9 вольт берется через выход и общий, как показано.

Схема регулятора напряжения

Итак, предположим, что мы хотим получить выходное напряжение +9 В от нашего настольного блока питания, тогда все, что нам нужно сделать, это подключить регулятор напряжения + 9 В к желтому проводу + 12 В. Поскольку блок питания уже выполнил выпрямление и сглаживание до выхода + 12 В, требуются только дополнительные компоненты: конденсатор на входе и другой на выходе.

Эти дополнительные конденсаторы способствуют стабильности регулятора и могут находиться в диапазоне от 100 до 330 нФ. Дополнительный выходной конденсатор емкостью 100 мкФ помогает сгладить характерные пульсации, обеспечивая хороший переходный процесс. Этот конденсатор большой величины, размещенный на выходе цепи источника питания, обычно называют «сглаживающим конденсатором».

Эти регуляторы серии 78xx выдают максимальный выходной ток около 1,5 А при фиксированных стабилизированных напряжениях 5, 6, 8, 9, 12, 15, 18 и 24 В соответственно. Но что, если мы хотим, чтобы выходное напряжение составляло + 9 В, но имел только регулятор 7805, + 5 В ?. Выход + 5 В 7805 относится к клемме «земля, Gnd» или «0 В».

Если бы мы увеличили это напряжение на контакте 2 с 4 В до 4 В, выход также увеличился бы еще на 4 В при условии достаточного входного напряжения. Затем, поместив небольшой 4-вольтный (ближайшее предпочтительное значение 4,3 В) диод Зенера между контактом 2 регулятора и массой, мы можем заставить 7805 5 В стабилизатор генерировать выходное напряжение +9 В, как показано на рисунке.

Увеличение выходного напряжения

Итак, как это работает. Стабилитрон 4,3 В требует обратного тока смещения около 5 мА для поддержания выхода с регулятором, потребляющим около 0,5 мА. Этот полный ток 5,5 мА подается через резистор «R1» с выходного контакта 3.

Таким образом, значение резистора, необходимого для регулятора 7805, будет R = 5 В / 5,5 мА = 910 Ом . Диод обратной связи D1, подключенный через входные и выходные клеммы, предназначен для защиты и предотвращает обратное смещение регулятора, когда входное напряжение питания выключено, а выходное питание остается включенным или активным в течение короткого периода времени из-за большой индуктивности. нагрузка, такая как соленоид или двигатель.

Затем мы можем использовать 3-контактные регуляторы напряжения и подходящий стабилитрон для получения различных фиксированных выходных напряжений от нашего предыдущего источника питания в диапазоне от + 5В до + 12В. Но мы можем улучшить эту конструкцию, заменив стабилизатор постоянного напряжения на регулятор переменного напряжения, такой как LM317T .

Источник переменного напряжения

LM317T – это полностью регулируемый 3-контактный положительный стабилизатор напряжения, способный подавать на 1,5 А выходное напряжение в диапазоне от 1,25 В до чуть более 30 Вольт. Используя соотношение двух сопротивлений, одно из которых является фиксированным значением, а другое – переменным (или оба фиксированным), мы можем установить выходное напряжение на желаемом уровне с соответствующим входным напряжением в диапазоне от 3 до 40 вольт.

Регулятор переменного напряжения LM317T также имеет встроенные функции ограничения тока и термического отключения, что делает его устойчивым к коротким замыканиям и идеально подходит для любого низковольтного или домашнего настольного источника питания.

Выходное напряжение LM317T определяется соотношением двух резисторов обратной связи R1 и R2, которые образуют сеть делителей потенциала на выходной клемме, как показано ниже.

LM317T Регулятор переменного напряжения

Напряжение на резисторе R1 обратной связи является постоянным опорным напряжением 1,25 В, V ref, создаваемым между клеммой «выход» и «регулировка». Ток регулировочной клеммы является постоянным током 100 мкА. Так как опорное напряжение через резистор R1 является постоянным, постоянным током я буду течь через другой резистор R2 , в результате чего выходного напряжения:

Затем любой ток, протекающий через резистор R1, также протекает через резистор R2 (игнорируя очень маленький ток на регулировочной клемме), причем сумма падений напряжения на R1 и R2 равна выходному напряжению Vout . Очевидно, что входное напряжение Vin должно быть как минимум на 2,5 В больше, чем требуемое выходное напряжение для питания регулятора.

Кроме того, LM317T имеет очень хорошее регулирование нагрузки, при условии, что минимальный ток нагрузки превышает 10 мА. Таким образом , чтобы поддерживать постоянное опорное напряжение 1.25V, минимальное значение резистора обратной связи R1 должно быть 1.25V / 10mA = 120 Ом , и это значение может варьироваться от 120 Ом до 1000 Ом с типичными значениями R 1 является приблизительно 220Ω, чтобы 240Ω лет для хорошей стабильности.

Если мы знаем значение требуемого выходного напряжения, Vout и резистор обратной связи R1 , скажем, 240 Ом, то мы можем рассчитать значение резистора R2 из вышеприведенного уравнения. Например, наше исходное выходное напряжение 9 В даст резистивное значение для R2 :

R1. ((Vout / 1,25) -1) = 240. ((9 / 1,25) -1) = 1 488 Ом

или 1500 Ом (1 кОм) до ближайшего предпочтительного значения.

Конечно, на практике резисторы R1 и R2 обычно заменяют потенциометром, чтобы генерировать источник переменного напряжения, или несколькими переключенными предварительно установленными сопротивлениями, если требуется несколько фиксированных выходных напряжений.

Но для того, чтобы уменьшить математические вычисления, необходимые для расчета значения резистора R2, каждый раз, когда нам нужно определенное напряжение, мы можем использовать стандартные таблицы сопротивлений, как показано ниже, которые дают нам выходное напряжение регуляторов для различных соотношений резисторов R1 и R2 с использованием значений сопротивления E24 ,

Соотношение сопротивлений R1 к R2

Значение R2 Значение резистора R1
150 180 220 240 270 330 370 390 470
100 2,08 1,94 1,82 1,77 1,71 1,63 1,59 1,57 1,52
120 2,25 2,08 1,93 1,88 1,81 1,70 1,66 1,63 1,57
150 2,50 2,29 2,10 2,03 1,94 1,82 1,76 1,73 1,65
180 2,75 2,50 2,27 2,19 2,08 1,93 1,86 1,83 1,73
220 3,08 2,78 2,50 2,40 2,27 2,08 1,99 1,96 1,84
240 3,25 2,92 2,61 2,50 2,36 2,16 2,06 2,02 1,89
270 3,50 3,13 2,78 2,66 2,50 2,27 2,16 2,12 1,97
330 4,00 3,54 3,13 2,97 2,78 2,50 2,36 2,31 2,13
370 4,33 3,82 3,35 3,18 2,96 2,65 2,50 2,44 2,23
390 4,50 3,96 3,47 3,28 3,06 2,73 2,57 2,50 2,29
470 5,17 4,51 3,92 3,70 3,43 3,03 2,84 2,76 2,50
560 5,92 5,14 4,43 4,17 3,84 3,37 3,14 3,04 2,74
680 6,92 5,97 5,11 4,79 4,40 3,83 3,55 3,43 3,06
820 8,08 6,94 5,91 5,52 5,05 4,36 4,02 3,88 3,43
1000 9,58 8,19 6,93 6,46 5,88 5,04 4,63 4,46 3,91
1200 11,25 9,58 8,07 7,50 6,81 5,80 5,30 5,10 4,44
1500 13,75 11,67 9,77 9,06 8,19 6,93 6,32 6,06 5,24

Изменяя резистор R2 для потенциометра на 2 кОм, мы можем контролировать диапазон выходного напряжения нашего настольного источника питания от примерно 1,25 вольт до максимального выходного напряжения 10,75 (12-1,25) вольт. Тогда наша окончательная измененная схема переменного электропитания показана ниже.

Цепь питания переменного напряжения

Мы можем немного улучшить нашу базовую схему регулятора напряжения, подключив амперметр и вольтметр к выходным клеммам. Эти приборы будут визуально отображать ток и напряжение на выходе регулятора переменного напряжения. При желании в конструкцию также может быть включен быстродействующий предохранитель для обеспечения дополнительной защиты от короткого замыкания, как показано на рисунке.

Недостатки LM317T

Одним из основных недостатков использования LM317T в качестве части цепи питания переменного напряжения для регулирования напряжения является то, что до 2,5 вольт падает или теряется в виде тепла через регулятор. Так, например, если требуемое выходное напряжение должно быть +9 вольт, то входное напряжение должно быть целых 12 вольт или более, если выходное напряжение должно оставаться стабильным в условиях максимальной нагрузки. Это падение напряжения на регуляторе называется «выпадением». Также из-за этого падения напряжения требуется некоторая форма радиатора, чтобы поддерживать регулятор в холодном состоянии.

К счастью, доступны регуляторы переменного напряжения с низким падением напряжения, такие как регулятор низкого напряжения с низким падением напряжения National Semiconductor «LM2941T», который имеет низкое напряжение отключения всего 0,9 В при максимальной нагрузке. Это низкое падение напряжения обходится дорого, так как это устройство способно выдавать только 1,0 ампер с выходом переменного напряжения от 5 до 20 вольт. Однако мы можем использовать это устройство для получения выходного напряжения около 11,1 В, чуть ниже входного напряжения.

Таким образом, чтобы подвести итог, наш настольный источник питания, который мы сделали из старого блока питания ПК в предыдущем учебном пособии, может быть преобразован для обеспечения источника переменного напряжения с помощью LM317T для регулирования напряжения. Подключив вход этого устройства через желтый выходной провод + 12 В блока питания, мы можем иметь фиксированное напряжение + 5 В, + 12 В и переменное выходное напряжение в диапазоне от 2 до 10 вольт при максимальном выходном токе 1,5 А.

Как модифицировать SMPS для регулируемого выхода тока и напряжения

В этой статье обсуждается метод, с помощью которого любой готовый SMPS может быть преобразован в схему SMPS переменного тока с помощью нескольких внешних перемычек.

В одной из предыдущих статей мы узнали, как создать схему SMPS с переменным напряжением, используя простой каскад шунтирующих стабилизаторов. В данном случае мы также используем тот же этап схемы для реализации функции переменного тока на выходе.

Что такое SMPS

SMPS расшифровывается как Switch-Mode-Power-Supply, который использует высокочастотный импульсный преобразователь на основе феррита для преобразования 220 В переменного тока в постоянный.Использование высокочастотного ферритового трансформатора делает систему высокоэффективной с точки зрения компактности, потерь мощности и стоимости.

Сегодняшняя концепция SMPS почти полностью заменила традиционные трансформаторы с железным сердечником и превратила эти блоки в гораздо более компактные, легкие и эффективные альтернативы адаптерам питания.

Однако, поскольку блоки SMPS обычно доступны в виде модулей с фиксированным напряжением, достижение предпочтительного напряжения в соответствии с потребностями приложения пользователя становится довольно трудным.

Например, для зарядки аккумулятора 12 В может потребоваться выходное напряжение около 14,5 В, но это значение является довольно странным и нестандартным, поэтому нам может быть чрезвычайно сложно получить на рынке ИИП с такими характеристиками.

Хотя на рынке можно найти схемы с переменным напряжением, они могут быть более дорогостоящими, чем обычные варианты с фиксированным напряжением, поэтому поиск метода преобразования существующего ИИП с фиксированным напряжением в переменный тип выглядит более интересным и желательным.

Немного изучив концепцию, я смог найти очень простой метод ее реализации, давайте узнаем, как проводить эту модификацию.

В моем блоге вы найдете одну популярную схему ИИП на 12 В, 1 ампер, которая на самом деле имеет встроенную функцию переменного напряжения.

Функция оптопары в SMPS

В указанной выше публикации мы обсудили, как оптопара играет важную роль в обеспечении критически важной функции постоянного выхода для любого SMPS.

Функцию оптопары можно понять с помощью следующего краткого объяснения:

Оптопара имеет встроенную схему светодиода / фототранзистора, это устройство интегрировано с выходным каскадом SMPS, так что когда выходной сигнал имеет тенденцию подниматься выше При пороге небезопасности загорается светодиод внутри оптопары, заставляя фототранзистор проводить.

Фототранзистор, в свою очередь, конфигурируется через чувствительную точку «выключения» каскада драйвера SMPS, где проводимость фототранзистора заставляет входной каскад отключаться.

Вышеупомянутое условие приводит к тому, что выход SMPS также мгновенно отключается, однако в тот момент, когда это переключение инициируется, оно корректирует и восстанавливает выход в безопасную зону, а светодиод внутри оптического устройства отключается, что снова включает входной каскад модуля SMPS.

Эта операция продолжает быстро переключаться с включения на выключение и наоборот, обеспечивая постоянное напряжение на выходе.

Регулируемый ток Модификация SMPS

Чтобы реализовать функцию управления током внутри любого SMPS, мы снова обращаемся за помощью к оптопаре.

Мы реализуем простую модификацию, используя конфигурацию транзистора BC547, как показано ниже:

Ссылаясь на приведенную выше конструкцию, мы получаем четкое представление о том, как изменить или сделать схему драйвера SMPS с переменным током.

Оптопара (обозначена красным квадратом) будет присутствовать по умолчанию для всех модулей SMPS, и, предполагая, что TL431 отсутствует, нам, возможно, придется настроить всю конфигурацию, связанную со светодиодами оптопары.

Если каскад TL431 уже является частью схемы SMPS, в этом случае мы просто должны рассмотреть возможность интеграции каскада BC547, который становится единоличным ответственным за предлагаемое управление током цепи.

Видно, что BC547 соединен со своим коллектором / эмиттером через катод / анод TL431 IC, а база BC547 соединена с выходом (-) SMPS через группу выбираемых резисторов Ra, Rb, Rc. , Rd.

Эти резисторы, находящиеся между базой и эмиттером транзистора BC547, начинают работать как датчики тока для схемы.

Они рассчитаны соответствующим образом, так что при перемещении перемычки между соответствующими контактами в линии вводятся различные ограничения тока.

Когда ток имеет тенденцию превышать установленный порог, определяемый значениями соответствующих резисторов, на базе / эмиттере BC547 возникает разность потенциалов, которой становится достаточно для включения транзистора, замыкая TL431 IC между опто-светодиоды и заземление.

Вышеупомянутое действие мгновенно загорается светодиодом оптического устройства, посылая сигнал «неисправности» на входную сторону SMPS через встроенный фототранзистор оптического сигнала.

Условие немедленно пытается выполнить отключение на выходной стороне, что, в свою очередь, останавливает провод BC547, и ситуация быстро меняется от ВКЛ до ВЫКЛ и ВКЛ, гарантируя, что ток никогда не превышает предварительно заданный порог.

Резисторы Ra ... Rd можно рассчитать по следующей формуле:

R = 0,7 / порог отключения по току

Например, если предположим, что мы хотим подключить к выходу светодиод с номинальным током 1 усилитель

Мы можем установить значение соответствующего резистора (выбираемого перемычкой) как:

R = 0,7 / 1 = 0,7 Ом

Мощность резистора может быть просто получена путем умножения вариантов, т.е. 0,7 x 1 = 0,7 ватт или просто 1 ватт.

Расчетный резистор гарантирует, что выходной ток светодиода никогда не пересекает отметку в 1 ампер, тем самым защищая светодиод от повреждения, другие значения для остальных резисторов могут быть соответствующим образом рассчитаны для получения желаемой опции переменного тока в модуле SMPS.

Преобразование фиксированного ИИП в ИИП переменного напряжения

В этом посте предпринимается попытка определить метод, с помощью которого любой ИИП может быть преобразован в источник переменного тока для достижения любого желаемого уровня напряжения от 0 до максимума.

Что такое шунтирующий регулятор

Мы обнаружили, что в нем используется каскад цепи шунтирующего регулятора для реализации функции переменного напряжения в конструкции.

Еще один интересный аспект заключается в том, что это устройство шунтирующего регулятора реализует эту функцию, регулируя вход оптопары схемы.

Теперь, поскольку каскад оптопары с обратной связью неизменно используется во всех схемах SMPS, путем введения шунтирующего регулятора можно легко преобразовать фиксированный SMPS в переменный аналог.

Фактически, можно также сделать схему переменного SMPS, используя тот же принцип, что объяснен выше.

Возможно, вы захотите узнать больше о том, что такое шунтирующий регулятор и как он работает.

Процедуры:

Ссылаясь на следующий пример схемы, мы можем найти точное расположение шунтирующего регулятора и детали его конфигурации:

См. Нижнюю правую часть диаграммы, отмеченной красными пунктирными линиями, она показывает переменное сечение интересующей нас схемы.Этот раздел отвечает за предполагаемые действия по регулированию напряжения.

Здесь резистор R6 можно заменить потенциометром 22 кОм для создания переменной конструкции.

Увеличение этого раздела обеспечивает лучшее представление задействованных деталей:

Определение оптопары

Если у вас есть цепь SMPS с фиксированным напряжением, откройте ее и просто обратите внимание на оптопару в конструкции, она будет в основном расположена только вокруг центрального ферритового трансформатора, как можно увидеть на следующем изображении:

После того, как вы нашли оптопару, очистите ее, удалив все части, связанные с выходной стороной оптопара, то есть через контакты, которые может быть направлен к выходной стороне печатной платы SMPS.

И соедините или интегрируйте эти выводы оптоэлектронной схемы с собранной схемой с помощью TL431, показанного на предыдущей схеме.

Вы можете собрать секцию TL431 на небольшой части печатной платы общего назначения и приклеить ее к основной плате SMPS.

Если ваша схема SMPS не имеет катушки выходного фильтра, вы можете просто замкнуть два положительных вывода схемы TL431 и присоединить нагрузку к катоду выходного диода SMPS.

Однако предположим, что ваш SMPS уже включает схему TL431 с оптопарой, тогда просто найдите положение резистора R6 и замените его потенциометром (см. Расположение R6 на первой схеме выше).

Не забудьте добавить резистор 220 или 470 Ом последовательно с POT, иначе при настройке потенциометра на самый верхний уровень можно мгновенно повредить шунтирующее устройство TL431.

Вот и все, теперь вы точно знаете, как преобразовать или создать схему SMPS с переменным напряжением, используя описанные выше шаги.

ОБНОВЛЕНИЕ

На следующем изображении показан, пожалуй, самый простой способ настроить схему SMPS для получения функций переменного напряжения и тока.Пожалуйста, посмотрите, как должны быть настроены потенциометры или предустановки в оптроне для получения желаемых результатов:

Если у вас есть какие-либо дополнительные сомнения относительно конструкции или объяснения, не стесняйтесь выражать их через свои комментарии.

О Swagatam

Я инженер-электронщик (dipIETE), любитель, изобретатель, разработчик схем / печатных плат, производитель. Я также являюсь основателем веб-сайта: https://www.homemade-circuits.com/, где я люблю делиться своими инновационными идеями и руководствами по схемам.
Если у вас есть запрос, связанный со схемой, вы можете взаимодействовать с ним через комментарии, я буду очень рад помочь!

.

Регулируемый импульсный источник питания 0–100 В, 50 А

Регулируемый импульсный источник питания большой мощности идеально подходит для лабораторных работ. Топология, используемая при проектировании системы, - это коммутационная топология - полууправляемый мост.

Написано и представлено: Дхрубаджоти Бисвас

Использование IC UC3845 в качестве главного контроллера

Импульсный источник питания запитан от передатчиков IGBT и далее управляется схемой UC3845.
Напряжение сети проходит напрямую через фильтр ЭМС, который дополнительно проверяется и фильтруется на конденсаторе C4.

Поскольку емкость велика (50 ампер), приток в цепи ограничения с переключателем Re1, а также на R2.

Катушка реле и вентилятор, снятые с блока питания AT или ATX, питаются от 12 В. Питание осуществляется через резистор от вспомогательного источника питания 17 В.

Идеально выбрать R1, чтобы напряжение на вентиляторе и катушке реле ограничивалось до 12 В. Вспомогательное питание, с другой стороны, использует схему TNY267, а R27 обеспечивает защиту от пониженного напряжения вспомогательного питания.

Электропитание не включается, если ток меньше 230 В. Схема управления UC3845 обеспечивает рабочий цикл 47% (макс.) С выходной частотой 50 кГц.

Питание схемы дополнительно осуществляется с помощью стабилитрона, который фактически помогает снизить напряжение питания и даже помогает сдвинуть порог UVLO с нижнего 7,9 В и верхнего 8,5 В до 13,5 и 14,1 В соответственно.

Источник включает питание и начинает работать от напряжения 14,1 В. Он никогда не опускается ниже 13.5 В и далее помогает защитить IGBT от рассыщения. Однако исходный порог UC3845 должен быть как можно более низким.

Контроллер цепи MOSFET T2, который помогает заставить трансформатор Tr2 работать, предлагает плавающий привод и гальваническую развязку для верхнего IGBT.

Именно через формирующие цепи T3 и T4 он помогает управлять T5 и T6 IGBT, а коммутатор дополнительно выпрямляет линейное напряжение на силовом трансформаторе Tr1.

Когда выходной сигнал выпрямляется и достигает среднего значения, он сглаживается катушкой L1 и конденсаторами C17.Обратная связь по напряжению дополнительно подключена от выхода к контакту 2 и IO1.

Кроме того, вы также можете установить выходное напряжение источника питания с помощью потенциометра P1. Гальваническая развязка обратной связи не требуется.

Это потому, что цепь управления этого регулируемого SMPS соединена с вторичным SMPS и не оставляет соединения с сетью. Обратная связь по току проходит через трансформатор тока TR3 прямо на 3 контакта IO1, и порог защиты от перегрузки по току может быть установлен с помощью P2.

Входное питание 12 В может быть получено от источника питания ATX

Схема каскада контроллера

Стадия переключения IGBT

+ U1 и -U1 могут быть получены от входа сети 220 В после соответствующего выпрямления и фильтрации

Использование радиатора для полупроводников

Также не забудьте разместить диоды D5, D5 ', D6, D6', D7, D7 ', транзисторы T5 и T6 на радиаторе вместе с мостом. Следует позаботиться о размещении демпферов R22 + D8 + C14, конденсаторов C15 и диодов D7 рядом с IGBT.Светодиод LED1 сигнализирует о работе источника питания, а LED2 сигнализирует об ошибке или текущем режиме.

Светодиод загорается, когда питание перестает работать в режиме напряжения. В режиме напряжения на контакте 1 IO1 установлено значение 2,5 В, в противном случае - 6 В. Светодиодный свет является опцией, и вы можете исключить ее при изготовлении.

Как сделать трансформатор индуктивности

Индуктивность: Для силового трансформатора TR1 коэффициент трансформации составляет примерно 3: 2 и 4: 3 в первичной и вторичной обмотках.Также имеется воздушный зазор в ферритовом сердечнике EE-формы.

Если вы хотите намотать самостоятельно, используйте сердечник, как в инверторе, размером около 6,4 см2.

Первичная обмотка состоит из 20 витков с 20 проводами диаметром от 0,5 до 0,6 мм каждый. 14 витков вторичной обмотки с диаметром 28 имеют такие же размеры, как и первичная обмотка. Более того, также возможно создание обмоток из медных лент.

Важно отметить, что применение одинарной толстой проволоки невозможно из-за скин-эффекта.

Теперь, поскольку обмотка не требуется, вы можете сначала намотать первичную, а затем вторичную. Трансформатор драйвера переднего затвора Тр2 имеет три обмотки по 16 витков каждая.

При использовании трех скрученных изолированных проводов звонка все обмотки должны быть намотаны одновременно, оставляя воздушный зазор на обмотке ферритового сердечника.

Затем возьмем основной источник питания от блока питания AT или ATX компьютера с сечением жилы от 80 до 120 мм2. Трансформатор тока Tr3 имеет от 1 до 68 витков на ферритовом кольце, и количество витков или размер здесь не критичны.

Однако необходимо соблюдать процесс ориентирования обмотки трансформаторов. Также необходимо использовать фильтр электромагнитных помех с двойным дросселем.

Выходная катушка L1 имеет две параллельные катушки индуктивности 54 мкГн на кольцах из порошкового железа. В итоге общая индуктивность составляет 27 мкГн, а катушки намотаны двумя магнитными медными проводами диаметром 1,7 мм, в результате чего общее поперечное сечение L1 составляет прибл. 9 мм2.

Выходная катушка L1 подключена к отрицательной ветви, поэтому на катоде диода отсутствует высокочастотное напряжение.Это облегчает его установку в радиатор без какой-либо изоляции.

Выбор характеристик IGBT

Максимальная входная мощность коммутируемого источника питания составляет около 2600 Вт, а результирующий КПД превышает 90%. В импульсном источнике питания вы можете использовать IGBT типа STGW30NC60W или другие варианты, такие как STGW30NC60WD, IRG4PC50U, IRG4PC50W или IRG4PC40W.

Вы также можете использовать быстрый выходной диод с соответствующим номинальным током. В худшем случае средний ток верхнего диода составляет 20 А, а нижний диод в аналогичной ситуации - 40 А.Таким образом, лучше использовать верхний полуток диода, чем нижний.

В качестве верхнего диода можно использовать HFA50PA60C, STTH6010W или DSEI60-06A, а также два DSEI30-06A и HFA25PB60. Для нижнего или нижнего диода вы можете использовать два HFA50PA60C, STTH6010W или DSEI60-06A, иначе четыре DSEI30-06A и HFA25PB60.

Важно, чтобы диод радиатора терял 60 Вт (приблизительно), а потери в IGBT могли составлять 50 Вт. Однако установить потерю D7 довольно сложно, так как она зависит от свойства Tr1.

Кроме того, потери на мосту могут составлять 25 Вт. Переключатель S1 обеспечивает отключение в режиме ожидания в первую очередь из-за того, что частое переключение сети может быть неправильным, особенно при использовании его в лаборатории. В режиме ожидания потребление составляет около 1 Вт, и S1 можно пропустить.

Если вы хотите создать источник питания с фиксированным напряжением, это также возможно, но для того же лучше использовать коэффициент трансформации Tr1 для максимальной эффективности, например, при первичном использовании 20 витков и при вторичном использовании 1 очередь за 3.5В - 4В.

О компании Swagatam

Я инженер-электроник (dipIETE), любитель, изобретатель, разработчик схем / печатных плат, производитель. Я также являюсь основателем веб-сайта: https://www.homemade-circuits.com/, где я люблю делиться своими инновационными идеями и руководствами по схемам.
Если у вас есть какой-либо вопрос, связанный со схемой, вы можете взаимодействовать с ним через комментарии, я буду очень рад помочь!

.

Как работают блоки питания для ПК

Если есть хоть один компонент, который жизненно важен для работы компьютера, то это блок питания. Без него компьютер - это просто инертный ящик из пластика и металла. Блок питания преобразует линию переменного тока (AC), идущую из вашего дома, в постоянный ток (DC), необходимый для персонального компьютера. В этой статье мы узнаем, как работают блоки питания для ПК и что означают номинальные мощности.

В персональном компьютере (ПК) источником питания является металлический ящик, который обычно находится в углу корпуса.Блок питания виден сзади многих систем, поскольку он содержит розетку для кабеля питания и охлаждающий вентилятор.

Блоки питания

, часто называемые «импульсными блоками питания», используют технологию переключателя для преобразования входного переменного тока в более низкие напряжения постоянного тока. Типичные значения напряжения:

3,3 и 5 В обычно используются в цифровых схемах, в то время как 12 В используется для запуска двигателей в дисководах и вентиляторах.Основная спецификация блока питания ватт . Ватт - это произведение напряжения в вольтах и ​​ тока в амперах или амперах. Если вы работали с ПК в течение многих лет, вы, вероятно, помните, что на оригинальных ПК были большие красные тумблеры, которые имели большой вес. Когда вы включали или выключали компьютер, вы знали, что делаете это. Эти переключатели фактически контролировали подачу 120-вольтного питания на источник питания.

Сегодня вы включаете питание небольшой кнопкой и выключаете машину с помощью пункта меню.Эти возможности были добавлены к стандартным источникам питания несколько лет назад. Операционная система может отправить сигнал источнику питания, чтобы он отключился. Кнопка посылает 5-вольтовый сигнал на источник питания, чтобы сообщить ему, когда нужно включить. В блоке питания также есть цепь, которая подает 5 вольт, называемая VSB для «напряжения режима ожидания», даже когда она официально «выключена», так что кнопка будет работать. См. Следующую страницу, чтобы узнать больше о технологии переключателя.

.

Линейно регулируемый источник питания в сравнении с импульсным | ОРЕЛ

Для повседневных электронных устройств, особенно с интегральными схемами, требуется надежный источник постоянного напряжения, который может обеспечивать питание в любое время без каких-либо сбоев. В этом блоге мы рассмотрим две топологии источников питания, которые следует рассмотреть для вашего следующего проекта: источники питания с линейным стабилизатором и импульсные источники питания. Выбор источника питания зависит от ваших требований к эффективности, занимаемому пространству, регулировке мощности, времени отклика при переходных процессах и стоимости.

Источник питания с линейной регулировкой

Линейные регуляторы были предпочтительными источниками питания до 1970-х годов для преобразования переменного тока (AC) в установившийся постоянный ток (DC) для электронных устройств. Хотя сегодня этот тип источника питания не используется так широко, он по-прежнему является лучшим выбором для приложений, требующих минимального шума и пульсаций.

Они могут быть громоздкими, но источники питания с линейным регулированием бесшумны. (Источник изображения)

Как они работают

Основным компонентом, обеспечивающим работу линейного регулятора, является стальной или чугунный трансформатор.Этот трансформатор выполняет две функции:

  • Он действует как барьер для разделения входа высокого напряжения переменного тока от входа низкого напряжения постоянного тока, который также отфильтровывает любой шум, попадающий в выходное напряжение.
  • Он снижает входное напряжение переменного тока с 115 В / 230 В до приблизительно 30 В, которое затем может быть преобразовано в постоянное напряжение постоянного тока.

Напряжение переменного тока сначала понижается трансформатором, а затем выпрямляется несколькими диодами. Затем он сглаживается до низкого постоянного напряжения парой больших электролитических конденсаторов.Это низкое постоянное напряжение затем регулируется как стабильное выходное напряжение с помощью транзистора или интегральной схемы.

Вот блок питания с линейным регулятором. (Источник изображения)

Регулятор напряжения в линейном источнике питания действует как переменный резистор. Это позволяет изменять значение выходного сопротивления в соответствии с требованиями к выходной мощности. Поскольку регулятор напряжения постоянно сопротивляется току для поддержания напряжения, он также действует как устройство рассеивания мощности.Это означает, что полезная мощность постоянно теряется в виде тепла, чтобы поддерживать постоянный уровень напряжения.

Трансформатор - это уже большой компонент, который нужно разместить на печатной плате (PCB). Из-за постоянной мощности и тепловыделения для источника питания линейного регулятора потребуется радиатор. Сами по себе эти два компонента делают устройство очень тяжелым и громоздким по сравнению с небольшим форм-фактором импульсного источника питания.

Предпочтительные приложения

Линейные регуляторы

известны своим низким КПД и большими размерами, но они обеспечивают бесшумное выходное напряжение.Это делает их идеальными для любого устройства, требующего высокой частоты и низкого уровня шума, например:

  • Цепи управления
  • Малошумящие усилители
  • Сигнальные процессоры
  • Автоматизированное и лабораторное испытательное оборудование
  • Датчики и схемы сбора данных

Преимущества и недостатки

Источники питания с линейной стабилизацией могут быть громоздкими и неэффективными, но их низкий уровень шума идеально подходит для приложений, чувствительных к шуму. Некоторые преимущества и недостатки этой топологии, которые следует учитывать, включают:

Преимущества

  • Простое приложение .Линейные регуляторы могут быть реализованы как единый блок и добавлены в схему всего двумя дополнительными фильтрующими конденсаторами. Это позволяет инженерам любого уровня подготовки легко планировать и проектировать их с нуля.
  • Низкая стоимость . Если вашему устройству требуется выходная мощность менее 10 Вт, то стоимость компонентов и производства намного ниже по сравнению с импульсными источниками питания.
  • Низкий уровень шума / пульсаций . Линейные регуляторы имеют очень низкие пульсации выходного напряжения и широкую полосу пропускания.Это делает их идеальными для любых чувствительных к шуму приложений, включая устройства связи и радио.

Недостатки

  • Ограниченная гибкость . Линейные регуляторы можно использовать только для понижения напряжения. Для источника питания переменного и постоянного тока трансформатор с выпрямлением и фильтрацией необходимо будет разместить перед линейным источником питания, что увеличит общие затраты и усилия.
  • Ограниченные тиражи . Источники питания с линейной стабилизацией обеспечивают только одно выходное напряжение.Если вам нужно больше, вам нужно будет добавить отдельный линейный регулятор напряжения для каждого требуемого выхода.
  • Низкая эффективность . Среднее устройство с линейным регулированием достигает КПД от 30% до 60% за счет рассеивания тепла. Это также требует добавления радиатора, который увеличивает размер и вес устройства.

В наши дни энергоэффективных устройств низкий КПД линейно регулируемого источника питания может стать убийцей. Нормальный источник питания с линейной регулировкой будет работать с КПД около 60% при выходе 24 В.Когда вы рассматриваете входную мощность 100 Вт, вы получаете 40 Вт потери мощности.

Прежде чем рассматривать возможность использования источника питания с линейной регулировкой, мы настоятельно рекомендуем учитывать потери мощности, которые вы получите от входа к выходу. Вы можете быстро оценить эффективность линейного регулятора по следующей формуле:

Импульсный источник питания (SMPS)

Импульсные источники питания были представлены в 1970-х годах и быстро стали самым популярным способом подачи постоянного тока на электронные устройства.Что делает их такими замечательными? По сравнению с линейными регуляторами выделяются их высокий КПД и производительность.

В стандартный адаптер переменного тока входит импульсный блок питания. (Источник изображения)

Как они работают

Импульсный источник питания регулирует выходное напряжение с широтно-импульсной модуляцией (ШИМ). Этот процесс создает высокочастотный шум, но обеспечивает высокую эффективность при небольшом форм-факторе. При подключении к сети переменного тока напряжение 115 В или 230 В переменного тока сначала выпрямляется и сглаживается набором диодов и конденсаторов, которые обеспечивают высокое напряжение постоянного тока.Это высокое постоянное напряжение затем понижается с помощью небольшого ферритового трансформатора и набора транзисторов. В процессе понижения сохраняется высокая частота переключения от 200 кГц до 500 кГц.

Низкое постоянное напряжение, наконец, преобразуется в устойчивый выход постоянного тока с помощью другого набора диодов, конденсаторов и катушек индуктивности. Любое регулирование, необходимое для поддержания постоянного выходного напряжения, осуществляется путем регулировки ширины импульса высокочастотного сигнала. Этот процесс регулирования работает через цепь обратной связи, которая постоянно контролирует выходное напряжение и при необходимости регулирует соотношение включения-выключения сигнала ШИМ.

Вот импульсный источник питания, в котором на тонну больше деталей, чем с линейным регулированием. (Источник изображения)

Предпочтительные приложения

Чаще всего импульсные источники питания используются в приложениях, где важны время автономной работы и температура, например:

  • Электролиз, обработка отходов или применение топливных элементов
  • Двигатели постоянного тока, игровые автоматы, авиация и морское применение
  • Научно-исследовательское, производственное и испытательное оборудование
  • Зарядка литий-ионных батарей, используемых в авиации и транспортных средствах
  • Процессы гальваники, анодирования и гальванопластики

Преимущества и недостатки

Импульсные источники питания

могут иметь более высокий КПД, чем линейные регуляторы, но их шум делает их плохим выбором для приложений радиосвязи и связи.Некоторые преимущества и недостатки этой топологии, которые следует учитывать, включают:

Преимущества

  • Малый форм-фактор . Понижающий трансформатор в ИИП работает на высокой частоте, что, в свою очередь, уменьшает его объем и вес. Это позволяет импульсному источнику питания иметь гораздо меньший форм-фактор, чем линейные регуляторы.
  • Высокая эффективность . Регулирование напряжения в импульсном источнике питания осуществляется без чрезмерного рассеивания тепла.КПД SMPS может достигать 85% -90%.
  • Гибкие приложения . К импульсному источнику питания можно добавить дополнительные обмотки, чтобы обеспечить более одного выходного напряжения. ИИП с трансформаторной изоляцией может также обеспечивать выходное напряжение, не зависящее от входного напряжения.

Недостатки

  • Сложная конструкция . По сравнению с линейными регуляторами планирование и проектирование импульсных источников питания обычно предназначено для специалистов по энергетике.Это не лучший источник питания, если вы планируете разработать свой собственный без внимательного изучения и опыта.
  • Высокочастотный шум . Операция переключения полевого МОП-транзистора в импульсном источнике питания обеспечивает высокочастотный шум в выходном напряжении. Это часто требует использования радиочастотного экранирования и фильтров электромагнитных помех в чувствительных к шуму устройствах.
  • Стоимость выше . Для более низкой выходной мощности 10 Вт или менее дешевле использовать линейно регулируемый источник питания.

Импульсные блоки питания никуда не денутся и станут лучшим выбором для приложений, не чувствительных к шуму. Сюда входят такие устройства, как зарядные устройства для мобильных телефонов, двигатели постоянного тока и многое другое.

Линейный регулятор

и SMPS в сравнении с

Теперь мы рассмотрим последнее сравнение между линейно регулируемыми и импульсными источниками питания при их параллельном сравнении. Некоторые из наиболее важных требований, которые необходимо учитывать, включая размер / вес, диапазон входного напряжения, рейтинг эффективности и уровень шума среди других факторов.Вот как он распадается:

Как спроектировать свой собственный Это выходит за рамки этого блога, чтобы объяснить, как разработать линейно регулируемый или импульсный источник питания. Однако есть несколько руководств, которыми мы хотели бы поделиться. Имейте в виду, что конструкция SMPS требует высокого уровня сложности и не рекомендуется для начинающих проектировщиков электроники. Руководства по проектированию линейно регулируемых источников питания

Руководства по проектированию импульсных источников питания

Power On В наши дни большинство электронных устройств должны преобразовывать сеть переменного тока в постоянное выходное напряжение постоянного тока.Для этой цели необходимо рассмотреть две топологии: источники питания с линейным регулированием и импульсные источники питания. Линейное регулирование идеально подходит для приложений, требующих низкого уровня шума, тогда как импульсные источники питания лучше подходят для портативных устройств, где важны срок службы батареи и эффективность. Решая, какую топологию выбрать, всегда учитывайте требуемый рейтинг эффективности, форм-фактор, выходную регулировку и требования к шуму. Готовы разработать свой первый линейный регулируемый или импульсный источник питания? Попробуйте Autodesk EAGLE бесплатно сегодня!

Источники питания с линейной регулировкой Импульсные источники питания
Размер Линейный блок питания мощностью 50 Вт обычно 3 x 5 x 5.5 ” Импульсный блок питания мощностью 50 Вт, обычно 3 x 5 x 1 дюйм
Вес Линейный источник питания 50 Вт - 4 фунта Импульсный источник питания 50 Вт - 0,62 фунта
Диапазон входного напряжения 105 - 125 В переменного тока и / или

210–250 В перем. Тока

90 - 132 В переменного тока или 180 - 264 В переменного тока без PFC

90-264 В переменного тока с PFC

КПД Обычно 40% -60% Обычно 70% -85%
EMI Низкий Высокая
Утечка Низкий Высокая
Схема Средняя сложность, можно проектировать с помощью направляющих Высокая сложность, требуется специальность
Нормы нагрузки 0.От 005% до 0,2% от 0,05% до 0,5%
Линейный регламент от 0,005% до 0,05% от 0,05% до 0,2%
Количество деталей Низкий, требуется только регулятор и фильтрация ввода / вывода Высокий, требуется переключатель, демпфер, трансформатор, конденсаторы, сеть обратной связи и т. Д.
.

Смотрите также