Вход на сайт

Зарегистрировавшись на сайте Вы сможете добавлять свои материалы






Самодельная электроника для чпу станка


Руководство по созданию фрезерного CNC ЧПУ станка. Глава 1. Электроника станка


Всем доброго времени суток! А вот и я с новой частью своего рассказа о ЧПУ - станке. Когда начинал писать статью даже не думал, что она получится настолько объемной. Когда написал про электронику станка посмотрел и испугался – лист А4 исписан с двух сторон, а ещё очень и очень много чего нужно рассказать.

В итоге получилось этакое руководство по созданию станка ЧПУ, рабочего станка, с ноля. Будет три части статьи об одном станке: 1-электронная начинка, 2-механика станка, 3-все тонкости настройки электроники, самого станка, и программы управления станком.
В общем попытаюсь объединить в одном материале всё полезное и необходимое каждому начинающему в этом интересном деле, то что сам прочел на разных интернет-ресурсах и пропустил через себя.

Содержание / Contents

Кстати, в той статье я забыл показать фотографии изготовленных поделок. Исправляю это. Пенопластовый медведь и фанерное растение.
После того, как собрал свой маленький станочек без существенных затрат сил, времени и средств, меня всерьез заинтересовала эта тема. Посмотрел на ютубе, если не все, то почти все ролики, связанные с любительскими станками. Особенно впечатлили фотографии изделий, которые люди делают на своих «home CNC». Посмотрел и принял решение – буду собирать свой большой станок! Вот так на волне эмоций, хорошо всё не обдумал погрузился в новый и неизведанный для себя мир CNC.

Не знал с чего начать. Первым делом заказал нормальный шаговый двигатель Vexta на 12 кг/см, между прочим с гордой надписью «made in Japan».


Пока тот ехал через всю Россию, сидел вечерами на разных ЧПУ-шных форумах и пытался определиться в выборе контроллера STEP/DIR и драйвера шаговых двигателей. Рассматривал три варианта: на микросхеме L298, на полевиках, либо же купить готовый китайский TB6560 о котором были очень противоречивые отзывы.

У одних он работал без проблем продолжительное время, у других сгорал при малейшей ошибки пользователя. Кто-то даже писал, что у него сгорел, когда тот немножко провернул вал двигателя, подключенного в это время к контроллеру. Наверное факт ненадежности китайца и сыграл в пользу выбора схемы L297+IRFZ44 активно обсуждаемой на форуме. Схема наверное и в самом деле неубиваемая т.к. полевики драйвера по амперам в несколько раз превышают то, что нужно подавать на моторы. Пусть и самому паять надо (это же только в плюс), и по стоимости деталей выходило чуть больше, чем китайский контроллер, зато надежно, что важнее.

Немного отступлю от темы. Когда всё это делалось, даже не возникло мысли, что когда-нибудь буду об этом писать. Поэтому нет фотографий процесса сборки механики и электроники, только несколько фоток, сделанных на камеру мобильника. Всё остальное щелкал специально для статьи, в уже собранном виде.

Начну с блока питания. Планировал сделать импульсный, провозился с ним наверное неделю, но так и не смог победить возбуд, который шел непонятно откуда. Мотаю транс на 12в – всё ОК, мотаю на 30-полная неразбериха. Пришел к выводу, что какая-то бяка лезет по обратной связи с 30в на TL494 и сносит ей башню. Так и забросил этот импульсник, благо было несколько ТС-180 один из которых пошел служить родине в качестве транса питания. Да и что ни говори, а кусок железа и меди будет надежнее кучки рассыпухи. Трансформатор перемотал на нужные напряжения, а нужно было +30в на питание моторчиков, +15в на питание IR2104, +5в на L297, и вентилятор. На двигатели можно подавать 10, а можно и 70, главное не превышать по току, но, если сделать меньше – снижаются максимальные обороты и сила, а вот больше не позволял трансформатор т.к. нужно было 6-7А. Напряжения 5 и 15в застабилизировал, 30 оставил «плавающими» на усмотрение нашей электросети.

Всё это время ежевечернее сидел за компьютером и читал, читал, читал. Настройка контроллера, выбор программ: какой рисовать, какой управлять станком, как изготовить механику и тд. и тп. В общем, чем больше читал, тем страшнее становилось, и всё чаще возникал вопрос «нафига мне это надо?!». Но отступать было поздно, двигатель на столе, детали где-то в пути – надо продолжать.

Пришло время паять плату. Имеющиеся в интернете мне не подошли по трем причинам:
1 - В магазине, котором заказывал детали не оказалось IR2104 в DIP корпусах, и мне прислали 8-SOICN. На плату они припаиваются с другой стороны, перевернутые, и соответственно нужно было зеркалить дорожки, а их (IR2104) 12 штук.


2 - Резисторы и конденсаторы также взял в SMD корпусах для уменьшения количества отверстий, которые нужно было сверлить.
3 - Имеющийся у меня радиатор был меньшего размера и крайние транзисторы были вне его площади. Нужно было смещать полевики на одной плате вправо, а на другой влево, поэтому изготовил два вида платы.
Для безопасности LPT порта, контроллер и компьютер соединил через плату опторазвязки. Схему и печатку взял на одном известном сайте, но опять же пришлось немного переделать её под себя и убрать лишние детали.

Одна сторона платы питается через USB порт, другая, подключенная к контроллеру - от источника +5в. Сигналы передаются через оптроны. Все подробности о настройке контроллера и развязки напишу в третьей главе, здесь же упомяну только основные моменты. Данная плата развязки предназначена для безопасного подключения контроллера шагового двигателя к LPT порту компьютера. Полностью электрически изолирует порт компьютера от электроники станка, и позволяет управлять 4-х осевым ЧПУ станком. Если станок имеет только три оси, как в нашем случае, ненужные детали можно оставить висеть в воздухе, либо вообще их не впаивать. Имеется возможность подключения концевых датчиков, кнопки принудительной остановки, реле включения шпинделя и другого устройства, например пылесоса.

Это было фото платы опторазвязки взятое из интернета, а вот так выглядит мой огород после установки в корпус. Две платы и куча проводов. Но вроде бы наводок никаких нет, и всё работает без ошибок.

Первая плата контроллера готова, всё проверил и пошагово протестировал, как в инструкции. Подстроечником выставил небольшой ток (это возможно благодаря наличию ШИМ), и подключил питание (двигателей) через цепочку лампочек 12+24в, чтобы было «ничё, если чё». У меня же полевики стоят без радиатора.

Двигатель зашипел. Хорошая новость, значит ШИМ работает как надо. Нажимаю клавишу и он крутится! Забыл упомянуть, что этот контроллер предназначен для управления биполярным шаговым двигателем т.е. тем, у которого подключаются 4 провода. Игрался с режимами шаг/полушаг, током. В режиме полушаг двигатель ведёт себя стабильнее и развивает большие обороты + увеличивается точность. Так и оставил перемычку в «полушаге». С максимальным безопасным для двигателя током при напряжении примерно 30в получилось раскрутить двигатель до 2500 об/мин! Моему первому станку без ШИМ такое и не снилось. ))

Следующие два мотора заказал помощнее, Nema на 18кг/с, но уже «made in China».


По качеству они уступают Vexta, всё-таки Китай и Япония разные вещи. Когда вращаешь вал рукой у японца это происходит как-то мягко, а от китайцев ощущение другое, но на работе это пока что никак не сказалось. Замечаний к ним нет.

Спаял две оставшиеся платы, проверил через «светодиодный симулятор шагового двигателя», вроде бы всё хорошо. Подключаю один мотор – работает отлично, но уже не 2500 оборотов, а около 3000! По уже отработанной схеме подключаю третий мотор к третей плате, крутится пару секунд и встал… Смотрю осциллом – на одном выводе импульсов нет. Прозваниваю плату – одна из IR2104 пробита.

Ну ладно, может бракованная попалась, читал что часто такое бывает с этой микрухой. Впаиваю новую (брал с запасом 2 штуки), та же ерунда – пару секунд крутит и STOP! Тут я поднапрягся, и давай проверять полевики. Кстати, в моей плате установлены IRF530 (100В/17А) против IRFZ44 (50В/49А), как в оригинале. На мотор будет идти максимум 3А, так что запаса в 14А хватит с избытком, а вот разница в цене почти в 2 раза в пользу 530-ых.
Так вот, проверяю полевики и что я вижу…не припаял одну ножку! И на выход этой "ирки" полетели все 30В с полевика. Припаял ножку, ещё раз внимательно всё осмотрел, ставлю ещё одну IR2104, сам волнуюсь – это же последняя. Включил и был очень счастлив, когда двигатель не остановится после двух секунд работы. Режимы оставил такие: двигатель Vexta – 1,5А, двигатель NEMA 2,5А. При таком токе достигаются обороты примерно 2000, но лучше ограничить их программно во избежании пропуска шагов, и температура двигателей при длительной работе не превышает безопасную для моторов. Трансформатор питания справляется без проблем, ведь обычно одновременно крутятся только 2 мотора, но радиатору желательно дополнительное воздушное охлаждение.

Теперь про установку полевиков на радиатор, а их 24 штуки, если кто не заметил. В этом варианте платы они расположены лежа, т.е. радиатор просто на них ложится и чем-либо притягивается.


Конечно, желательно положить сплошной кусок слюды для изоляции радиатора от транзисторов, но у меня его не было. Выход нашел такой. Т.к. у половины транзисторов корпус идёт на плюс питания их можно крепить без изоляции, просто на термопасту. А под оставшиеся я положил кусочки слюды, оставшиеся от советских транзисторов. Радиатор и плату просверлил в трех местах насквозь и стянул болтиками. Одну большую плату я получил путем спаивания трех отдельных плат по краям, при этом для прочности впаял по периметру медный провод 1мм. Всю электронную начинку и блок питания разместил на каком–то железном шасси, даже не знаю от чего.

Боковые и верхнюю крышку вырезал из фанеры, и сверху поставил вентилятор.


В лицевой панели просверлил отверстия под многочисленные светодиоды индикации режимов работы.

Для быстро подключения/отключения двигателей и блока управления использовал разъёмы из прошлого тысячелетия. И контакт хороший и нужный ток держат без каких-либо последствий для себя.

Для того, чтобы не запутаться где какой индикатор и тумблер, нарисовал, приклеил такую бумажку, пропущенную через ламинатор.

Электронная часть закончилась. Следующая глава полностью посвящена железякам. До встречи!
Все материалы найдены в свободном доступе на просторах Сети. У каждой схемы есть автор и не хочется никого обидеть - на авторство никак не претендую.
Ниже чертежи платы развязки и самого контроллера, подстроенные под себя.
▼ Файловый сервис недоступен. Зарегистрируйтесь или авторизуйтесь на сайте.

Спасибо за внимание! Продолжение следует.

Камрад, рассмотри датагорские рекомендации

Виктор (alchedat)

с. Алчедат, Кемеровская обл.

О себе автор ничего не сообщил.

 

4 потрясающих станка с ЧПУ своими руками, которые вы можете построить сегодня

В зависимости от того, сколько углов вы разрезаете с помощью фрезерного станка с ЧПУ и насколько сложен ваш проект фрезерного станка с ЧПУ, фрезерный станок с ЧПУ, вероятно, самый дорогой, самый сложный в изготовлении, но самый гибкий DIY Станок с ЧПУ. Хотя было создано несколько фрезерных станков с ЧПУ с нуля, вам лучше преобразовать ручной фрезерный станок в ЧПУ, пока у вас не появится большой опыт работы с ЧПУ. Таким образом, одно из первых решений, которое вам нужно будет принять и которое определит множество других решений для вас в дальнейшем, - это какой ручной фрезерный станок преобразовать.

Есть много возможностей. Некоторые из них, которые следует рассмотреть в порядке от самого тяжелого / самого дорогого к самому легкому / дешевому, включают:

- Фрезерный станок для колен в стиле Бриджпорта: они дорогие, а тяжелое колено не особенно хорошо подходит для ЧПУ. OTOH, есть много коленных станков с ЧПУ, и ничто не говорит «фрезерный станок», как Bridgeport. Я бы не выбрал один, если бы хотел с самого начала заняться ЧПУ, но если он у вас уже есть, нет необходимости рассматривать что-либо еще.

- RF-45 и клоны: это постельные мельницы китайского производства, которые доступны из самых разных мест и во всевозможных вариантах. Они имеют рабочий диапазон и жесткость, как у бриджпорта, но без тяжелого колена, поэтому они лучше подходят для проектов с ЧПУ. Их самый большой недостаток - их шпиндель, который ограничен 1600 об / мин. Планируйте преобразование ременного привода в какой-то момент, прежде чем вы полностью реализуете потенциал одного из этих заводов.

- Grizzly G0704: Эти фрезы немного меньше RF-45, но они являются идеальной платформой для ЧПУ.Такие люди, как Хосс из Hossmachine, могут предоставить полную информацию обо всем, что вам нужно знать, о планах и часто о комплектах, которые помогут с преобразованием. Если стол и путешествия достаточно велики для ваших проектов, это будет более дешевый и быстрый проект, чем RF-45.

- Sieg X2: Это аккуратные маленькие машинки, очень популярные. Не думаю, что я стал бы меньше, чем X2, но вы можете делать с ним удивительные вещи, как продемонстрировал Hossmachine (полностью автоматический сменщик инструмента и корпус в стиле VMC).

Вот отличная статья о выборе станка-донора для проекта DIY CNC Mill.

Важное примечание:

Некоторые новички задумываются о переделке сверлильного станка в фрезерный. Даже не начинай идти по этому пути. Для получения посредственного результата потребуется столько усилий, что оно того не стоит.

Вот несколько типичных машин:

Переделка мельницы My DIY RF-45…

Преобразование ЧПУ

Hoss G0704 на довольно ранней стадии: он добавил намного больше!

.

ndongmo / Самодельный пишущий станок с ЧПУ: Проект «Сделай сам», который состоит из конструирования и реализации плоттера с ЧПУ с использованием старых пишущих DVD дисков.

перейти к содержанию Зарегистрироваться
  • Почему именно GitHub? Особенности →
    • Обзор кода
    • Управление проектами
    • Интеграции
    • Действия
    • Пакеты
    • Безопасность
    • Управление командой
    • Хостинг
    • мобильный
    • Истории клиентов →
    • Безопасность →
  • Команда
  • Предприятие
.

Необычный самодельный станок с ЧПУ | Hackaday

Вот довольно необычный самодельный станок с ЧПУ, которого мы раньше не видели!

[ModHappy] недавно принял вызов спроектировать и построить станок с ЧПУ из дешевых и легко доступных компонентов в хозяйственном магазине.

Бродя по магазину, он заметил островок сантехники и начал играть с трубами из ПВХ на полу, сильно запутав сотрудников магазина. Он сконструировал раму, но все еще нуждался в способе достижения линейного движения.На его призывы ответили на электрическом острове, где он использовал настенные крепления для кабелепровода! Им потребовалась лишь небольшая модификация, чтобы перейти от захвата трубы к скольжению по ней. Спустя несколько крепежных элементов, несколько шаговых двигателей от сломанного сканера, привод CD-ROM для оси Z, несколько соединенных вместе соединителей с помощью установочных винтов, и механическая сборка была завершена.

На стороне управления он использовал дешевую китайскую плату драйверов TB6560 с ЧПУ от eBay, которую он немного модифицировал для повышения надежности.Все это работает под LinuxCNC (который является бесплатным) на его старом ноутбуке - приятно отметить, что его также можно запустить вживую, если вы еще не разбираетесь в ОС Linux.

Не торопитесь после перерыва, чтобы увидеть его в действии, нарисовав потрясающий логотип сайта!

Если вы ищете станок с ЧПУ своими руками, который будет немного более надежным, вот версия с болтовым соединением, в которой вместо трубы из ПВХ используются металлические трубы.

.

Смотрите также