Вход на сайт

Зарегистрировавшись на сайте Вы сможете добавлять свои материалы






Самодельная цифровая шкала для трансивера


LB3500 + LC7265. Цифровая шкала для УКВ/FM-приёмника

1. Что такое цифровая шкала?

В современных приёмниках и тюнерах есть много дополнительных сервисных устройств, которые упрощают процесс настройки на радиостанцию. Одним из таких устройств является цифровая шкала. Это, как правило, 4-5 разрядный цифровой индикатор, на котором отображается непосредственная частота принимаемой радиостанции.

2. Как это работает?

Для этого нужно немного вспомнить теорию супергетеродинного приёма. В таком приёмнике есть входной контур с УВЧ (усилителем высокой частоты), гетеродин и смеситель (или преобразователь, что суть одно и то же). Гетеродин – это встроенный ВЧ-генератор, который вырабатывает (генерирует) напряжение высокой частоты. Частота этого напряжения может быть выше или ниже частоты принимаемого сигнала на вполне определённую величину (обычно 6,5 или 8,4 или 10,7 МГц). Т.е., например, при настройке на станцию, которая работает на частоте 100,0 МГц (при частоте ПЧ = 10,7 МГц), гетеродин будет вырабатывать сигнал частотой 89,3 МГц (если его частота ниже частоты сигнала станции) или 110,7 МГц (если выше). Второй вариант на практике используется чаще.

Содержание / Contents

При перестройке по диапазону частота настройки УВЧ и гетеродина меняется одновременно. Для этого используется сдвоенный агрегат настройки (КПЕ, вариометр или варикапы). Принятый сигнал и сигнал от гетеродина подаются на смеситель, который выделяет разность этих частот. Эта частота называется промежуточной (ПЧ). Дальнейшее (основное) усиление принятого сигнала производится именно на ПЧ. Это упрощает конструкцию приёмника, так как не нужно делать перестраиваемые контуры, а основное усиление сигнала любой принятой станции производится на одной и той же частоте. Это основное преимущество супергетеродина.
Измерять непосредственно частоту принимаемого сигнала сложно, поскольку его величина очень незначительна и подвержена влиянию внешних факторов. А вот гетеродин – это «местный» генератор. Частоту и амплитуду вырабатываемого гетеродином напряжения можно стабилизировать (что и делается в хороших приёмниках), а раз они относительно стабильны, то и измерить их значительно проще. Вот именно для измерения частоты гетеродина и используется цифровая шкала.
Цифровая шкала – это, по сути, цифровой частотомер, но довольно «специфический». Например, если к гетеродину подключить «обычный» частотомер, то он нам покажет не частоту принимаемой станции, а частоту самого гетеродина. Пользоваться такой шкалой будет неудобно, так как придётся «в уме» отнимать (или прибавлять) величину ПЧ к показаниям индикатора. Что бы не обременять радиослушателя такими «математическими вычислениями», их производят непосредственно в самой цифровой шкале. В этом и заключается её «специфика».
Как это происходит? В общем-то, довольно просто – с помощью предустановки (предварительной записи) значения частоты ПЧ в микросхемы счётчика в начале каждого цикла измерения. Так, при частоте ПЧ = 10,7 МГц и при условии, что частота гетеродина выше частоты принимаемой станции, в счётчики предварительно записывается число «9893». В приведённом выше примере частота, вырабатываемая гетеродином, будет 110, 7 МГц. Подаём этот сигнал на вход счётчика (естественно, предварительно поделив её на 100 000). Он сначала отсчитает 107 импульсов (это частота ПЧ), что приведёт к «обнулению» предустановленных счетчиков и далее они начнут считать непосредственно частоту станции «как бы» с нуля. Вот и весь «фокус».
Именно на таком принципе работает ЦШ на дискретных элементах, которую я построил ещё в 90-е годы. В основе – схема ЦШ тюнера «Ласпи-005», которая была основательно переделана. Для её изготовления потребовалось 18 ИМС, в том числе 3 шт. — из серии К500 (ЭСЛ-логика), большое количество «обвязки», сложная печатная плата.

В то же время, уже тогда существовали ИМС иностранных фирм, которые позволяли построить очень простую ЦШ с использованием всего 1…2 корпусов микросхем. Понятное дело, что в то время они были недоступны. Один из таких «комплектов» выпустила фирма Sanyo. Он состоит из микросхемы прескалера (предварительного делителя частоты на «8») LB3500 и, собственно, ИМС ЦШ LC7265. Существует так же «модификация» этой ИМС – LC7267, которая, кроме ЦШ, содержит ещё и электронные часы. Но цоколёвка у этих ИМС совершенно разная. Этот комплект использовался в автомагнитолах и бытовой аудиоаппаратуре. В настоящее время эти ИМС являются сильно устаревшими. Тем не менее, их до сих пор можно купить в магазинах, стоят они относительно недорого и позволяют построить простую, хорошо работающую ЦШ для лампового или полупроводникового УКВ приёмника. Эта же ИМС может работать и с АМ приёмником, но эта функция в данной конструкции не реализована и не проверялась автором на практике. Делитель частоты на «8». Рекомендуемое напряжение питания + 4,5 … 5,5 В. Максимальное напряжение питания +8 В. Может работать в диапазоне частот от 30 до 150 МГц. Диапазон входных напряжений ВЧ – от 100 до 600 мВ. Потребляемый ток 16 … 24 мА. Выполнена в корпусе SEP9 (однорядный, 9 ножек с шагом 2,54 мм).
От себя добавлю, что некоторые экземпляры этой ИМС довольно капризны к напряжению питания и начинают нормально работать только при напряжении +5,5 … 6,0 В. Именно поэтому на плате для неё разведён отдельный регулируемый стабилизатор на ИМС LM317LZ.Цифровая шкала для АМ/ЧМ приёмников. Рекомендуемое напряжение питания + 4,5 … 10 В. Максимальное напряжение питания +11 В. Может работать в диапазоне частот от 1 до 18 МГц (по входу ЧМ) и от 0,5 до 3 МГц (по входу АМ). Входное напряжение ВЧ (по всем входам) – не более 0,9 Uпит. Максимальная потребляемая мощность – 550 мВт. Выполнена в корпусе DIP42S (двухрядный, 42 ножки с шагом 1,778 мм).

К ИМС можно подключить 4 или 5 семисегментных светодиодных индикаторов с общим анодом для отображения частоты. Индикация статическая (ножки 1-5, 23-34, 36-42), а так же индикаторы КГц и МГц (ножки 7 и 6). Выходы на индикаторы сделаны на полевых транзисторах с открытым стоком, максимальный ток нагрузки для каждого сегмента – 15 мА, для выходов, к которым подключаются сразу 2 сегмента – 30 мА. Это позволяет подключить к ним большинство современных индикаторов без ключей на транзисторах. Достаточно подобрать токоограничивающие резисторы.

В режиме ЧМ на индикаторе может отображаться частота от 00,00 МГц до 199,95 МГц (если подключено 5 индикаторов) или до 199,9 МГц (если 4 индикатора) с шагом 50 КГц. В режиме АМ – от 000 КГц до 1999 КГц с шагом 1 или 10 КГц. Если подключено 5 индикаторов, то в режиме ЧМ в младшем разряде будет отображаться либо «0», либо «5» (десятки КГц). Устанавливать этот индикатор, как мне кажется, совершенно не нужно. На схеме он обведён пунктиром, а на плате не разведён.
Переключение режимов АМ/ЧМ осуществляется подачей на 20-ю ножку «0» (АМ) или «1» (ЧМ). Входы для АМ и ЧМ раздельные (ножки 9 и 8).

Для работы встроенного тактового генератора к ИМС подключается кварц на 7,2 МГц (ножки 18 и 19). Так же имеется выход 50 Гц (22 ножка) с делителя частоты, который можно использовать, например, для ИМС часов. (Многие дешёвые импортные ИМС часов используют для этого частоту сети 50 или 60 Гц и не отличаются высокой точностью хода).
Есть два служебных входа. HLD (16 ножка) – удержание. Если подать на него «0», то показания дисплея не будут меняться, хотя сама ЦШ продолжает работать. Можно использовать, например, во время автоматической настройки приёмника. BLC (17 ножка) – гашение дисплея. Можно использовать, например, при включении, пока не закончатся все переходные процессы. Или при использовании этого же индикатора совместно с другой ИМС, например, часов (при условии, что у часовой ИМС выходы сделаны с открытым стоком и то же есть режим BLC).

Наконец, имеется 5 выводов для установки частоты ПЧ: 3 вывода для ЧМ и 2 вывода для АМ (ножки с 11 по 15). Используя таблицы, приведённые в datasheet, можно в небольших пределах «подстроить» величину частоты ПЧ (для ЧМ – от 10,675 до 10,75 МГц), а так же выбрать «знак» — прибавлять или отнимать частоту ПЧ. Это нужно для случаев, когда УПЧ настроен не точно на 10,7 МГц. А «знак» — для случаев, когда частота гетеродина выше или ниже частоты сигнала станции.

В Интернете и радиолюбительской литературе можно найти много различных схем ЦШ на основе этого комплекта. Все они были тщательно изучены и проанализированы. С не меньшим вниманием были изучены справочные листки (datasheet) на эти ИМС. На основании этого был разработан и изготовлен первый вариант ЦШ.

Именно на этой плате я проверял многие найденные схемотехнические решения, пробовал различные варианты «обвески» обеих микросхем, нашел несколько ошибок и неточностей, которые «кочуют» по Инету из статьи в статью (честное слово, иногда казалось, что авторы никогда «живьём» эти микросхемы не видели…), экспериментировал с буферным каскадом. Именно здесь обнаружил, что некоторые экземпляры LB3500 довольно «капризны» к напряжению питания, что общий токоограничивающий мощный резистор лучше заменить отдельными резисторами на каждый сегмент индикатора, что бы устранить неприятное мерцание при смене показаний шкалы… Одним словом, эта плата была «полигоном», на котором отрабатывались многие решения, которые впоследствии вошли в окончательный вариант. Цена за все «эксперименты» — одна «убитая» LC7265 и две «убиенных» LB3500

На основании «экспериментов», был разработан окончательный вариант схемы ЦШ. Основная задача, которая при этом ставилась – сделать ЦШ, в которой были бы учтены все недостатки первоначальных вариантов, максимально универсальную, компактную, с минимальным количеством соединительных проводов, с возможностью подстройки напряжения питания отдельно для каждой ИМС. В результате «родилась» вот такая схема (см. ниже).
Для неё были разработаны два варианта печатных плат.

В первом варианте плата индикаторов «жёстко» крепится перпендикулярно основной плате с помощью гребёнки-уголка с шагом 2,54 мм.

Во втором варианте плата индикаторов соединяется с основной платой при помощи шлейфа. Это позволяет разместить платы в разных местах, что бывает очень полезным при конструировании передней панели приёмника.

LB3500 + LC7265. Цифровая шкала для УКВ/FM-приёмника

Одно из самых нелюбимых моих занятий — распаивать шлейфы. Поэтому, что бы избежать этой неприятной операции, использованы 34-контактные разъемы и готовые компьютерные шлейфы от НГМД («флоппиков» FDD). Этого «добра» сейчас хватает у любого компьютерщика, а даже если покупать, то стоит это все очень недорого.

Используется та часть шлейфа, где провода в середине не перекручены. Так же стоит обратить внимание на 3-й контакт — в некоторых шлейфах он «заглушен» пластиковой вставкой («защита от дурака») и используется как дополнительный ключ. Излишки обрезаем обычными ножницами. Если длина шлейфа все равно велика, то покупаем «маму на кабель» и укорачиваем его до нужной длины. Разъемы («папы») на платы можно выпаять из плат старых FDD, а можно и прикупить, благо они стоят очень недорого. Они бывают прямые и угловые, с защелками и без. Поэтому выбираем то, что больше нравится или подходит по конструкции.

В остальном оба варианта ничем не отличаются, имеют абсолютно одинаковые схемы и применяются одинаковые типы деталей.

Исключён фрагмент. Полный вариант статьи доступен меценатам и полноправным членам сообщества. Читай условия доступа. В ней устранены все недостатки, которые замечены мной в других схемах.
Исключён фрагмент. Полный вариант статьи доступен меценатам и полноправным членам сообщества. Читай условия доступа.
Исключён фрагмент. Полный вариант статьи доступен меценатам и полноправным членам сообщества. Читай условия доступа.

Для изготовления плат использовался импортный односторонний фольгированный стеклотекстолит толщиной 1,5 мм. Платы изготовлены по ЛУТ. После травления и обрезки «в размер», просверлены все отверстия, дорожки зачищены «нулёвкой», обезжирены спиртом и полностью залужены.

Исключён фрагмент. Полный вариант статьи доступен меценатам и полноправным членам сообщества. Читай условия доступа.Сборка никаких особенностей не имеет. После монтажа, перед первым включением, желательно очистить платы от наплывов канифоли и промыть спиртом или ацетоном. Внимательно осмотреть пайку, особенно ИМС LC7265, поскольку расстояние между ножками у неё маленькое. Потом, не устанавливая ИМС шкалы, подать на платы +12 В (БП должен обеспечивать ток не менее 250 … 300 мА) и на обоих стабилизаторах выставить напряжения +5 В. Выключить БП, установить обе ИМС и включить снова. На индикаторе будет светиться какое-то число (обычно 111,4 … 112,9 МГц). Если есть ВЧ-генератор (например, Г4-116), то можно подать на вход шкалы напряжение частотой 100 МГц и амплитудой 0,3 … 0,5 В. При этом на индикаторе должно отобразиться число 89,3 (при условии, что все джамперы ЧМ установлены в «0»). При частоте генератора 110,7 МГц, на индикаторе будет отображаться «100,0».Для проверки работы шкалы в «реальных» условиях проще всего использовать готовый блок УКВ, у которого есть выход на ЦШ (обычно на импортных схемах и блоках он обозначается как «OSC»). Например, типа KCF-201. Такие блоки широко использовались в импортных автомагнитолах в 80-90 годах. Практически все они имеют одинаковую «распиновку», найти их несложно:

Исключён фрагмент. Полный вариант статьи доступен меценатам и полноправным членам сообщества. Читай условия доступа.
Шкала будет работать при подключении к этому блоку и без буферного каскада – он уже установлен в этом блоке УКВ штатно. Нужно собрать простейшую схему (Рис. 16, расположение выводов указано при виде на блок сзади), выход «OSC» блока УКВ соединить коаксиальным кабелем со входом ЦШ и подать питание. Выход «To IF AMP» («К усилителю ПЧ») можно никуда не подключать, как и вход АРУ («AFC»). Таким способом можно легко убедиться в работоспособности шкалы, перестраивая блок с помощью переменного резистора на 47 … 100 КОм от начала до конца диапазона.

В других же случаях подключение шкалы к блоку УКВ – это отдельная тема. Задача, на самом деле, непростая. Дело в том, что шкала обладает своим входным сопротивлением и входной ёмкостью. Поэтому, при подключении шкалы к гетеродину приёмника, мы внесём дополнительную ёмкость в гетеродин, изменим режим его работы и сместим диапазон («вниз»), в котором он генерирует. Что бы минимизировать это влияние (но не устранить полностью), между гетеродином и ЦШ необходимо включить буферный каскад – эмиттерный или истоковый повторитель, который обладает большим входным и малым выходным сопротивлениями и имеет маленькую входную ёмкость. В любом случае, подстраивать гетеродин придётся. Желательно разместить буферный каскад в непосредственной близости от гетеродина, на отдельной маленькой платке, а уже к ней подключить провода, идущие к ЦШ. Если приёмник разрабатывается «с нуля», то имеет смысл недалеко от гетеродина разместить и прескалер LB3500, а на ЦШ подавать уже сигнал с частотой, поделенной на «8». Именно так я поступил в самодельном ламповом блоке УКВ:

Универсальные рекомендации здесь дать сложно. Простую схеку буферного каскада можно «подсмотреть», например, в книге: Б.Ю. Семёнов «Современный тюнер своими руками», «Солон-Р», М., 2001 г, стр. 183. Это узел R5R6R7VT1C5 на полевом транзисторе КП303. Я проверял работу этого каскада с однокристальными приёмниками на микросхемах ТЕА5710 и СХА1238. В обоих случаях всё работало прекрасно. Пришлось только немного подстроить частоту гетеродина.

К сожалению, для приёмников, у которых частота ПЧ отличается от 10,7 МГц (например, как в старых советских ламповых приёмниках с их ПЧ = 8,4 или 6,5 МГц) эта шкала не годится. Хотя в Интернете мне встречались варианты доработки шкалы на этой ИМС для приёмников с ПЧ = 500 КГц (в режиме АМ). Там автор просто подобрал кварц с другой частотой. Не знаю, насколько корректно при этом будет работать ИМС, но такой вариант существует.

Чертежи всех печатных плат в формате .lay
▼ Файловый сервис недоступен. Зарегистрируйтесь или авторизуйтесь на сайте.

--
Сергей Вицан

Камрад, рассмотри датагорские рекомендации

Сергей (vitsserg)

Местоположение в тайне.

О себе автор ничего не сообщил.

 

Комплект цифрового приемопередатчика QRPGuys DSB

Комплект цифрового приемопередатчика QRPGuys 40/30/20 м DSB - снято с производства

Мы будем закрыты до 1 сентября. для летней подзарядки. Мы примем заказы и отправим их, когда вы снова увидите кнопку PayPal.

Этот комплект был снят с производства и заменен новым комплектом цифрового трансивера QRPGuys 40/30/20 м DSB II. Он улучшен и по цене такой же, как и оригинал. Щелкните здесь , чтобы получить подробную информацию о новом трансивере Rev. II.

У нас есть несколько голых печатных плат Rev. B по цене 10 долларов за комплект. Мы можем поставить только голую материнскую плату с тремя голыми модулями. Вам нужно будет получить свои собственные компоненты.

Квитанция PayPal - это подтверждение того, что мы получили ваш заказ. Наличие на складе и объем доставки могут задерживать доставку.

Цифровой трансивер QRPGuys DSB - это недорогой многодиапазонный комплект трансивера DSB, в настоящее время состоящий из трех простых сменных полосовых модулей на 40/30/20 м (доступны дополнительные печатные платы модуля). Этот трансивер представляет собой эволюцию, составленную из различных DSB и цифровых разработок в Интернете от ZL2BMI, VK3YE, AA7EE, BD6CR и других. С помощью Джима Джамманко (N5IB) и, наконец, Стива Вебера (KD1JV), мы предлагаем трансивер с приблизительной выходной мощностью 2.5 Вт на 40 м, более 1,5 Вт на 30 м и более 1 Вт на 20 м. Чувствительность приемника была измерена при 0,4 мкВ (-115 дБм). Все компоненты включены для основной платы (3,0 ″ x 3,12 ″) и трех (40/30/20 м) полосовых модулей.

На трансивере будет работать популярное бесплатное программное обеспечение WSJT-X (Windows, Linux или macOS), для которого требуется программа точной синхронизации времени, такая как Dimension 4, или многие другие доступные бесплатные программы. Пользователям потребуются две стереоперемычки 3,5 мм для подключения микрофона / динамика на звуковой карте компьютера или планшета.

Внутренняя схема VOX трансивера автоматически переключается на передачу при обнаружении выходного аудиосигнала от программного обеспечения на разъеме динамика ПК или планшета. Подключения к трансиверу: BNC для антенны, 3,5-миллиметровые стереоперемычки для аудиоразъемов компьютера и 12-14 В постоянного тока для 2,1-миллиметрового коаксиального разъема питания, установленного на печатной плате. Приблизительное энергопотребление составляет примерно RX-15mA / TX-350mA. Общий вес с тремя модулями составляет 3 унции. (85gm). Обычные необходимые инструменты - это паяльник с маленьким наконечником, канифольный припой для сердечника и маленькие боковые кусачки.Трансивер можно построить за вечер. По шкале сложности от 1 до 5, 5 - самый сложный, он оценивается на 3 в зависимости от вашего опыта. Также обратите внимание на планы по созданию компактного шасси размером 3,5 ″ кв. X 1,0 ″ из ​​материала печатной платы.

Щелкните здесь, чтобы перейти к руководству по сборке

Предлагаемое легкое сборное шасси для печатной платы

Ссылка для 3D-печатных файлов корпуса Zvone (S52O)

Excellent FT8 Руководство пользователя по ZL2IFB

Ссылка URL:

https: // физика.princeton.edu/pulsar/K1JT/wsjtx.html - Последняя программа WSJT-X

http://www.thinkman.com/dimension4/download.htm - Координаты компьютерного времени

https://time.is/ - Проверяет точность времени компьютера

,Схема мини-трансивера

| Самодельные схемотехнические проекты

Приемопередатчик - это устройство беспроводной связи, в которое встроены собственные передатчик и приемник для связи с другим аналогичным устройством в некотором отдаленном месте. Пользователь по обе стороны от устройства должен переключаться с передатчика на приемник и наоборот, разговаривая и слушая разговор друг друга соответственно.

Введение

В этом посте мы обсуждаем простую схему приемопередатчика малого радиуса действия, которую могут использовать любые любители для развлечения во время разговора с соседскими друзьями без каких-либо затрат.

Кроме того, этот мобильный радиовещательный трансивер может предоставить вашему дому дешевую беспроводную систему внутренней связи, позволяющую разговаривать с другим идентично подготовленным устройством. Его можно использовать в транспортных средствах во время путешествия вместе с друзьями, а также может быть полезно для обычных полевых и кемпинговых приложений.

Советы по конструкции

При сборке устройства все клеммы деталей должны быть как можно короче. Все можно собрать на секции вертикальной доски или на пластиковой доске с просверленными отверстиями, размер которой можно регулировать внутри корпуса.

Приемопередатчик может быть размещен в алюминиевой коробке размером 3-1 / 2 дюйма x 2-1 / 8 дюйма x 2 дюйма, при этом все детали собраны на компактной печатной плате или вертикальной плате. Все выводы компонентов должны быть короткими.

Катушки индуктивности L1 и L4 - это Bourns, 15 µh, сверхминиатюрные, высокочастотные дроссели.

L2 и L3 - это Bourns, 1,2 µh, сверхминиатюрные, высокочастотные дроссели. S1 - это мини-тумблер DPDT. J1 - банановый разъем для антенны.

Антенна может быть менее 5 футов в длину, это может быть обычная телескопическая антенна, легко доступная на рынке.

Использование электрета MIC

В первоначальной конструкции микрофон был угольного типа с импедансом 1,5 кОм, подключенный между соединением звена R1 / C3 и S1. Поскольку углеродный микрофон в настоящее время устарел, я заменил его на схему электретного микрофона.

Наушники могут быть обычными магнитными 1K или стандартными наушниками, подключенными к разъему J2, который представляет собой миниатюрный телефонный разъем.

Использование 3-го обертонного кристалла

Кристаллы, используемые в этом приемопередатчике, относятся к 3-му типу обертона.Это означает, что основная частота кристалла может иметь любое значение, но она должна быть указана с помощью функции третьего обертона.

Например, если основная частота кристалла составляет 27 МГц, тогда кристалл будет колебаться с частотой 3-го обертона примерно 27 x 3 = 81 МГц.

Как работает схема

Транзистор Q1 вместе с кристаллом, конденсаторами C1, C2, C3 и катушкой индуктивности L2 образует высокочастотный ВЧ-генератор, частота которого определяется значением 3-го обертона кристалла.Поскольку используется кристалл, частота стабильна без изменений.

Транзистор Q2 вместе с C8, L4 также образует генератор, но предназначен для работы в качестве схемы приемника. C8, L4 должны быть настроены точно для захвата частоты кристалла от другого блока приемопередатчика.

Переключатель S1a / S1b представляет собой групповой переключатель для выбора между передатчиком и приемником в тандеме. Когда переключатель повернут в сторону Q1, он активирует передатчик, так что передаваемый сигнал передается через антенну.

Когда переключатель направлен в сторону Q2, он активирует секцию приемника, чтобы он мог принимать сигналы, передаваемые от другого удаленного приемопередатчика.

Секция Q3 представляет собой простой усилитель звука, который усиливает захваченные сигналы от Q2 до уровня, подходящего для наушников.

Секция MIC представляет собой одиночный транзисторный микрофонный усилитель, который усиливает голосовые сигналы и модулирует частоту Q1 для предполагаемой передачи голосовых сигналов в эфир.

S2 - выключатель питания ВКЛ / ВЫКЛ, который может быть интегрирован с потенциометром R4. R4 - это схема управления чувствительностью, которую также можно использовать как регулятор громкости.

Батарея может быть герметичной батареей на 12 В или литий-ионной батареей.

Как установить

Процедура настройки на самом деле проста. Чтобы получить оптимальный диапазон от устройства, увеличьте резонанс передатчика, регулируя два регулируемых триммера C1, C2, пока не будет обнаружена максимальная сила. Это можно просто сделать с помощью измерителя напряженности поля или S-метра.

Список деталей

Рекомендации FCC

Предупреждение: Это устройство может быть отнесено к категории в соответствии с частью 15 правил FCC. Вы не должны создавать и использовать эту схему приемопередатчика, если сертификационная карта (или разумное факсимильное сообщение; см. Стр. 32) не подписана органом, имеющим как минимум лицензию оператора радиотелефонной связи второго класса, и только после тщательной проверки со стороны органа.

Другой простой дизайн приемопередатчика

Пунктирными линиями обозначены переключатели, которые соединены вместе.ТРАНЗИСТОРЫ МОГУТ БЫТЬ BC547 ДЛЯ Q1 И 2N2907 ДЛЯ Q2

Ссылаясь на принципиальную схему выше, C1 - это просто так называемый «трюк» конденсатор, который обычно состоит из двух кусков слабо скрученных соединительных проводов, один из которых заканчивается от S1a, а другой - от S1b. Следите за тем, чтобы не удалить эмалевое покрытие с провода.

LI - это обычная рамочная ферритовая антенна, которая обычно используется в радиоприемниках AM. На следующем изображении показана стандартная рамочная антенная катушка AM.

Как сделать антенную катушку

Антенная катушка L1 сделана с использованием 73 витков 0.Суперэмалированный медный провод диаметром 3 мм поверх любого стандартного ферритового стержня. Сторона базы транзистора L1 состоит из 10 витков на 73 витка с использованием того же провода.

L2 изготавливается путем намотки 25-футового лицевого провода № 7/41 на ферритовый сердечник длиной 3/4 дюйма и диаметром 1/2 дюйма. T1 - это миниатюрный драйвер-трансформатор от 10K до 2K. T2 - это миниатюрный выходной трансформатор от 2 кОм до 100 Ом.

T1, T2 - стандартные трансформаторы аудиовыхода.

Громкоговорителем может быть небольшой динамик на 8 Ом 1/2 Вт.S1 - четырехполюсный двухпозиционный переключатель с возвратным рычагом. S2 является неотъемлемой частью регулятора громкости 10K с переключателем.

Антенна - это просто длинная телескопическая антенна (не более 7 футов), которая может быть обычной автомобильной радиоантенной.

Как работать

Чтобы управлять простой схемой трансивера, включите регулятор / переключатель громкости и установите ручку на максимальную громкость. Также настраивайте триммер C2, пока не услышите нулевую точку на любом канале приемника AM-диапазона.

Вам нужно будет построить два таких устройства, которые должны быть идентичны своим настройкам, а затем наслаждаться общением на расстоянии 100 метров или даже больше, в зависимости от ориентации антенны.

Настройка

При проверке частоты передачи отрегулируйте групповой конденсатор C3 на максимальную мощность. Если вы слышите сильный визг, возможно, вам придется отрегулировать длину скручивания конденсатора «уловки», чтобы уменьшить чувствительность трансивера и эффект визга.

Убедитесь, что частота передачи и частота приема различаются в двух передающих передатчиках, это необходимо для обеспечения минимального эффекта обратной связи и помех.

Список деталей

О Swagatam

Я инженер-электронщик (dipIETE), любитель, изобретатель, разработчик схем / печатных плат, производитель. Я также являюсь основателем веб-сайта: https://www.homemade-circuits.com/, где я люблю делиться своими инновационными идеями и руководствами по схемам.
Если у вас есть запрос, связанный со схемой, вы можете взаимодействовать с ним через комментарии, я буду очень рад помочь!

.

Установка стержневой антенны на самодельный портативный приемопередатчик QRP - Radio Engineering Projects при поддержке DK7IH (Питер)

Когда я начал понимать, что выход на улицу с небольшим портативным приемопередатчиком QRP SSB для диапазона 20 метров - это больше, чем просто проверка, чтобы выяснить, что он вообще не работает, я придумал более прочный монтаж для съемной стержневой антенны. Из-за того, что эта антенна (которая сейчас имеет длину около 220 сантиметров) оказывает значительное влияние на разъем BNC и, следовательно, на корпус моего трансивера.После 3 или 4 периодов использования на открытом воздухе я обнаружил, что он вырезал переднюю панель с разъемом BNC от внутренней рамы корпуса трансивера. F ...! (Ф… - слово подверглось цензуре!)

Целью практического решения было предотвратить чрезмерное усилие рычага от трансивера. Наиболее практичным способом решения этой проблемы было создание простой монтажной рамы, которая могла выдерживать нагрузку, не подводя ее к радиостанции:

Рамка для крепления переносной стержневой антенны (C) Peter Rachow- DK7IH

Держатель сделан из 0.8-миллиметровый алюминий U-образной формы в месте установки радиоприемника. Винты корпуса не позволяют TRX выпадать наружу, а лента Velcro® фиксирует радиоприемник внутри рамы. С обратной стороны рамы я прикрепил кусок алюминиевой трубы туда, куда входит основание антенны. Вот и все:

Ручной трансивер QRP SSB в монтажной раме для переносной стержневой антенны (C) Peter Rachow - DK7IH

Легко и практично. Так и должно быть!

Аннотация: Я еще раз переделал антенну.Согласующая схема была упразднена. Теперь я просто использую большую катушку примерно с 55 витками эмалированного провода диаметром 1 мм на стержне из ПВХ диаметром 8,5 мм. Прекрасно работает. Коэффициент стоячей волны 1,1: 1! 😉

73 де Петер (DK7IH)

(C) 2015 Питер Рачоу

Нравится:

Нравится Загрузка ...

Автор: Петр (DK7IH)

Радиолюбитель с 1987 года, конструктор радиоаппаратуры, разработчик программного обеспечения, учитель естествознания в средней школе.Просмотреть все сообщения Peter (DK7IH)

,

Смотрите также