Вход на сайт

Зарегистрировавшись на сайте Вы сможете добавлять свои материалы






Простая самодельная паяльная станция


Паяльная станция своими руками. Проще некуда

Приветствую, Самоделкины!
В этой статье мы соберем очень простую и довольно надежную паяльную станцию.

На Ютубе уже полно роликов про паяльные станции, есть довольно интересные экземпляры, но все они сложны в изготовлении и настройке. В представленной здесь станции, все настолько просто, что справится любой, даже неопытный человек. Идею автор нашел на одном из форумов сайта «Паяльник» (forum.cxem.net), но немного ее упростил. Данная станция может работать с любым 24-х вольтовым паяльником, у которого есть встроенная термопара.

Теперь давайте рассмотрим схему устройства.
Условно автор разделил ее на 2 части. Первая, это блок питания на микросхеме IR2153.

Про нее было уже много всего сказано и на ней не будем останавливаться, примеры сможете найти в описании под видеороликом автора (ссылка в конце статьи). Если же неохота возиться с блоком питания, ее можно вообще пропустить и купить готовый экземпляр на 24 вольта и ток 3-4 ампера.


Вторая часть - это собственно мозги станции. Как уже говорилось выше, схема очень простая, выполнена на одной микросхеме, на сдвоенном операционном усилителе lm358.


Один операционник работает как усилитель термопары, а второй как компаратор.


Пару слов про работу схемы. В начальный момент времени паяльник холодный, следовательно, напряжение на термопаре минимальное, а это означает, что на инвертирующем входе компаратора напряжение отсутствует.

На выходе компаратора плюс питания. Транзистор открывается, идет нагрев спирали.


Это в свою очередь увеличивает напряжение термопары. И как только на инвертирующем входе напряжение сравняется с не инвертирующем, на выходе компаратора установится 0.

Следовательно, транзистор отключается и нагрев прекращается. Как только температура снижается на долю градуса, цикл повторяется. Также схема снабжена индикатором температуры.

Это обыкновенный цифровой китайский вольтметр, который измеряет усиленное напряжение термопары. Для его калибровки установлен подстроечный резистор.

Калибровку можно производить с помощью термопары мультиметра, или же по комнатной температуре.

Это автор продемонстрирует в ходе сборки.
Разобрались со схемами, теперь необходимо изготовить печатные платы. Для этого воспользуемся программой Sprint Layout, и начертим печатные платы.


В вашем же случае достаточно просто скачать архив (автор оставил все ссылки под видеороликом).
Теперь займёмся изготовлением опытного образца. Распечатываем чертёж дорожек.

Далее подготавливаем поверхность текстолита. Сначала с помощью наждачной бумаги зачищаем медь, а потом спиртом обезжириваем поверхность, для лучшего переноса рисунка.


Когда текстолит готов, размещаем на нем рисунок платы. Выставляем максимальную температуру на утюге и проходимся им по всей поверхности бумаги.


Все, можно приступать к травлению. Для этого готовим раствор в пропорциях 100 мл перекиси водорода, 30 г лимонной кислоты и 5 г поваренной соли.


Помещаем вовнутрь плату. А для ускорения травления автор воспользовался своим специальным устройством, которое он собрал своими руками ранее.

Теперь получившуюся плату необходимо очистить от тонера и просверлить отверстия под компоненты.

На этом все, изготовление платы закончено, можно приступать к запайке запчастей.

Запаяли плату регулятора, отмыли от остатков флюса, теперь можно подключать к ней паяльник. Но как это сделать, если мы не знаем где какой у него выход? Чтобы решить этот вопрос, необходимо разобрать паяльник.


Далее начинаем искать какой провод куда идет, параллельно записывая на бумагу, во избежание ошибок.

Также можно заметить, что сборка паяльника явно производилась на тяп-ляп. Флюс не отмыт и это нужно исправить. Исправляется это довольно легко, ничего нового, с помощью спирта и зубной щетки.


Когда узнали распиновку, берем вот такой штекер:


Далее проводами подпаиваем его к плате, а также припаиваем и другие элементы: вольтметр, регулятор, все как на схеме.

По поводу пайки вольтметра. У него имеются 3 вывода: первый и второй - это питание, а третий – измерительный.



Зачастую измерительный провод и провода питания спаяны в один. Нам необходимо его отсоединить для измерения низкого напряжения с термопары.

Также у вольтметра можно закрасить точку, чтобы она нас не сбивала. Для этого воспользуемся маркером черного цвета.


После этого можно производить включение. Питание автор берет от лабораторного блока.


Если вольтметр показывает 0 и схема не работает, возможно вы неправильно подключили термопару. Собранная без косяков схема начинает работать сразу. Проверяем нагрев.

Все отлично, теперь можно калибровать датчик температуры. Для калибровки датчика температуры необходимо отключить нагреватель и подождать пока паяльник остынет до комнатной температуры.

Далее вращая отверткой потенциометр, выставляем заранее известную комнатную температуру. Потом на время подключаем нагреватель и даем ему остыть. Калибровку для точности лучше провести пару раз.


Теперь поговорим о блоке питания. Готовая плата выглядит так:


Также к ней необходимо намотать импульсный трансформатор.

Как его мотать, можно посмотреть в одном из предыдущих роликов автора. Ниже вы сможете ознакомиться со скриншотом расчета обмоток, может кому пригодится.

На выходе блока получаем 22-24 вольта. То же самое мы брали с лабораторного блока.

Корпус для паяльной станции.
Когда платки готовы, можно приступать к созданию корпуса. В основании будет вот такая аккуратная коробка.


В первую очередь к ней необходимо нарисовать лицевую панель для придания так сказать товарного вида. В программе FrontDesigner сделать это можно легко и просто.


Далее необходимо распечатать трафарет и с помощью двухстороннего скотча закрепляем его на торце и идем делать отверстия под запчасти.

Корпус готов, теперь осталось разместить все компоненты внутри корпуса. Автор посадил их на термоклей, так как у данных электронных компонентов практически отсутствует какой-либо нагрев, поэтому они никуда не денутся, и прекрасно будут держаться на термоклее.

На этом изготовление закончено. Можно приступать к тестам.

Как видим, паяльник отлично справляется с лужением больших проводов и пайки габаритных массивов. И вообще, станция проявляет себя отлично.

Почему просто не купить станцию? Ну, во-первых, собрать самому дешевле. Автору, изготовление данной паяльной станции обошлось в 300 гривен. Во-вторых, в случае поломки можно без труда починить такую самодельную паяльную станцию.


После эксплуатации данной станции, автор практически не заметил разницы между HAKKO T12. Единственное чего не хватает, так это энкодера. Но это уже планы на будущее.

Благодарю за внимание. До новых встреч!

Видео:


Источник (Source) Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

Простая самодельная паяльная станция своими руками MK936 Схема

В интернете очень много разных паяльных станций, но у каждой свои особенности. Одни трудны для новичков, другие работают с редкими паяльниками, некоторые не доработаны и т. Д. Мы сделали упор на простоту, низкую стоимость ... Проекты электроники, Самодельная паяльная станция своими руками MK936 Схема »проекты atmega8, проект avr, микроконтроллер проекты, » Дата 2019/08/04

В интернете очень много разных паяльных станций, но у каждой свои особенности.Одни сложны для новичков, другие работают с редкими паяльниками, некоторые не доработаны и т.д. Мы сделали упор на простоту, дешевизну и функциональность, чтобы такую ​​паяльную станцию ​​мог собрать каждый начинающий радиолюбитель.

Обычный паяльник, подключенный напрямую к сети, просто постоянно греется с той же мощностью. Из-за этого он очень долго нагревается и регулировать температуру в нем нет возможности. Можно уменьшить эту мощность, но добиться стабильной температуры и повторяемости пайки будет очень сложно.Паяльник, подготовленный для паяльной станции, имеет встроенный датчик температуры, что позволяет подавать на него максимальную мощность во время нагрева, а затем поддерживать температуру на датчике.

Если вы просто попытаетесь отрегулировать мощность пропорционально разнице температур, он либо будет нагреваться очень медленно, либо температура будет плавать циклически. В результате программа управления должна содержать алгоритм ПИД-регулирования. В нашей паяльной станции мы, конечно же, использовали специальный паяльник и уделяли максимум внимания температурной стабильности.

Характеристики схемы паяльной станции

Питание от источника постоянного напряжения 12-24В
Потребляемая мощность при напряжении 24В: 50Вт
Сопротивление паяльника: 12Ω
Время выхода в рабочий режим: 1-2 минуты в зависимости от напряжение питания
Максимальное отклонение температуры в режиме стабилизации, не более 5 градусов
Алгоритм регулирования: PID
Отображение температуры на семисегментном индикаторе
Тип нагревателя: нихром
Тип датчика температуры: термопара
Возможность калибровки температуры
Настройка температура с помощью ecooder
LED для отображения состояния паяльника (нагрев / работа)

Схема паяльной станции Принципиальная схема

Схема предельно проста.В основе всего микроконтроллера Atmega8. Сигнал с оптопары подается на операционный усилитель LM358 с регулируемым усилением (для калибровки), а затем на вход АЦП микроконтроллера ATmega8A. Для отображения температуры используется семисегментный индикатор с общим катодом, разряды которого включаются через транзисторы. При повороте ручки энкодера BQ1 температура устанавливается, а в остальное время отображается текущая температура.При включении начальное значение устанавливается на 280 градусов. Определяя разницу между током и необходимой температурой, пересчитывая коэффициенты компонентов ПИД, микроконтроллер с помощью ШИМ модуляции нагревает паяльник. Для питания логической части схемы использовался простой линейный стабилизатор DA1 на 5В.

Список компонентов

Для сборки печатной платы и корпуса требуются следующие компоненты и материалы:

 BQ1.Энкодер EC12E24204A8 C1. Электролитический конденсатор 35 В, 10 мкФ С2, С4-С9. Керамические конденсаторы X7R, 0,1 мкФ, 10%, 50 В C3. Электролитический конденсатор 10В, 47мкФ DD1. Микроконтроллер ATmega8A-PU в корпусе DIP-28 DA1. Стабилизатор напряжения L7805CV до 5В в корпусе ТО-220 DA2. Операционный усилитель LM358DT в корпусе DIP-8 HG1. Семисегментный трехразрядный индикатор с общим катодом BC56-12GWA. Также на плате предусмотрено место для дешевого аналога. HL1. Любой индикаторный светодиод на ток 20 мА с шагом выводов 2.54 мм R2, R7. Резисторы 300 Ом, 0,125Вт - 2шт. R6, R8-R20. Резисторы 1КОм, 0,125Вт - 13шт. R3. Резистор 10 кОм, 0,125 Вт R5. Резистор 100 кОм, 0,125 Вт R1. Резистор 1 Ом, 0,125 Вт R4. Подстроечный резистор 3296Вт 100кОм VT1. Транзистор полевой ИРФ3205ПБФ в корпусе ТО-220 VT2-VT4. Транзисторы BC547BTA в корпусе ТО-92 - 3шт. Хз1. Двухконтактный зажим с шагом выводов 5,08 мм Двухконтактный зажим с шагом выводов 3,81 мм Трехконтактный вывод с шагом выводов 3,81 мм Радиатор стабилизатора FK301 Кузовной блок ДИП-28 Кузовной блок ДИП-8 Разъем для паяльника Выключатель питания SWR-45 B-W (13-KN1-1) Паяльник.Мы напишем об этом позже Детали из оргстекла для тела (файлы для вырезания в конце статьи) Ручка энкодера. Вы можете купить его, а можете распечатать на 3D-принтере. Файл для скачивания модели в конце статьи Винт М3х10 - 2шт. Винт М3х14 - 4шт. Винт М3х30 - 4шт. Гайка М3 - 2шт Гайка М3 квадратная - 8шт. Шайба М3 - 8шт Шайба горизонтальная М3 - 8шт Также необходимы для сборки монтажные провода, стяжки и термоусадочная трубка. 

Подробности процесса установки будут показаны и прокомментированы в видео ниже.Отметим лишь несколько моментов. Соблюдайте полярность электролитических конденсаторов, светодиода и направление установки микросхем. Чипы не устанавливаются, пока корпус не будет полностью собран и напряжение питания не проверено. С микросхемами и транзисторами следует обращаться осторожно, чтобы не повредить их статическим электричеством.

То есть осталось только подать питание на плату и подключить разъем паяльника.
Разъем паяльника требует пайки пяти проводов.Первому и пятому красным, остальным - черным. Контакт необходимо сразу одеть в термоусадочную трубку, а свободные концы проводов залудить.
Короткий (от переключателя к плате) и длинный (от переключателя к источнику питания) красные провода следует припаять к переключателю питания. Затем переключатель и разъем можно установить на лицевую панель. Обратите внимание, что переключатель может быть очень тугим. При необходимости доработайте файлы лицевой панели!

Прошивка и настройка микроконтроллера ATmega8

Вы можете найти HEX-файл для прошивки контроллера в конце статьи.Биты слияния должны оставаться заводскими, то есть контроллер будет работать на частоте 1 МГц от внутреннего генератора.
Первое включение следует произвести перед установкой на плату микроконтроллера ATmega8 и операционного усилителя. Подайте на схему постоянное напряжение питания от 12 до 24 В (красный должен быть «+», черный «-») и проверить наличие напряжения питания 5 В между выводами 2 и 3 стабилизатора DA1 (средний и правый выводы). . После этого отключите питание и установите микросхемы DA1 и DD1 в панели.При этом следите за положением ключевых фишек.

Снова включите паяльную станцию ​​и убедитесь, что все функции работают правильно. Индикатор отображает температуру, энкодер ее меняет, паяльник нагревается, а светодиод сигнализирует о режиме работы. Далее необходимо откалибровать паяльную станцию. Оптимальный вариант для калибровки - использование дополнительной термопары. Необходимо выставить необходимую температуру и проверить ее на укусе эталонным прибором.Если показания расходятся, отрегулируйте многооборотный подстроечный резистор R4. При настройке помните, что показания индикатора могут незначительно отличаться от реальной температуры. То есть, если вы выставили, например, температуру «280», а показания индикатора немного отклоняются, то по эталонному прибору нужно добиться именно температуры 280 ° С. Если у вас нет теста Измерительное устройство под рукой, вы можете установить резистор около 90 кОм, а затем экспериментально подобрать температуру.После проверки паяльной станции можно аккуратно, чтобы не растрескать детали, установить лицевую панель.

В текущей версии обновили чертежи резки оргстекла, изготовления печатных плат, а также обновили прошивку для устранения мерцания индикатора. Обратите внимание, что для новой версии прошивки необходимо включить CKSEL0, CKSEL2, CKSEL3, SUT0, BOOTSZ0, BOOTSZ1 и SPIEN (то есть изменить настройки по умолчанию).


Источник: Customelectronics.ru / simple_solder_mk936

СПИСОК ССЫЛКИ ДЛЯ ЗАГРУЗКИ ФАЙЛОВ (в формате TXT): LINKS-26215.zip

.

Самодельные паяльные станции для дешевых утюгов

У каждого, кто читал этот пост, были дешевые паяльники в виде карандаша, которые в какой-то момент своей жизни вставлялись прямо в стену. Даже если вы перешли на профессиональную паяльную станцию, у вас, вероятно, есть один из этих дешевых утюгов, который медленно нагревается до неизвестной температуры. [Пантелис] подумал, что сможет решить последнюю проблему с помощью своей самодельной паяльной станции для этих простых паяльников.

Поскольку паяльная станция предназначалась для контроля температуры утюга, [Pantelis] должен был придумать способ измерения температуры.Он сделал это, прикрепив термопару к утюгу возле наконечника. Провода были пропущены через ручку, а затем вдоль шнура питания.

И заводская железная заглушка, и выводы термопары вставляются в коробку, собранную специально для этого проекта. На фотографии вы увидите ЖК-экран, на котором отображаются как заданная, так и фактическая температура. Линейный потенциометр под ЖК-экраном используется для установки целевой температуры. Светодиод справа предупреждает оператора о том, что утюг нагревается, и когда он нагрелся до нужной температуры.

Несмотря на то, что информации о схемах или перечнях деталей не так много, [Пантелис] сделал хорошую фотографию, документируя свою сборку. Проверьте это, на это стоит посмотреть.

.

Самодельная паяльная станция делает это лучше

Паяльные станции

- наверное, один из самых важных инструментов в арсенале хакеров. Проблема в том, что хорошие стоят дорого, и иногда единственная разница между тем, чтобы хорошо паять или хорошо делать, - это качество инструмента, который вы используете! Вот почему [Альберт] и [Матиас] решили сделать своего собственного домашнего клона Веллера.

Так как самая важная часть паяльника - это хорошее жало, они используют иглу Weller - им просто нужно уметь управлять им.Они разработали корпус, напечатанный на 3D-принтере (исходные файлы здесь) для небольшого 1,8-дюймового ЖК-экрана, Arduino Pro Mini и щит MOSFET, а также выбранный ими источник питания 12v 8A. Регуляторов всего два - вкл / выкл и потенциометр для регулировки температуры.

Они потратили некоторое время на создание прототипа, и в результате получился довольно хороший продукт. Они на самом деле продали несколько, но поняли, что не зарабатывают никаких денег, поэтому прекратили их предлагать - вместо этого вы можете получить все исходные файлы самостоятельно с их GitHub.Также есть дополнительная информация в блоге [Матиаса].

Для более дешевой сборки вы можете использовать обычный утюг с привязанной к нему термопарой… но этот нам нравится больше.

[Спасибо за подсказку, Луис!]

.

Смотрите также