Вход на сайт

Зарегистрировавшись на сайте Вы сможете добавлять свои материалы






Полуавтомат инверторный самодельный


как собрать своими руками, инструкции, схемы

С опытом многие профессионалы приходят к выводу, что сварочный полуавтомат это намного больше, чем инструмент. Это универсальный помощник в бытовой сварке как на дачном участке, так и при ремонте автомобиля.

Он не ограничивает вас в выборе материала для сварки и пригодится не только мастеру, но и новичку.

Массовое производство полуавтоматов началось всего несколько лет назад. Сварщики старой школы раньше соединяли конструкции огромными трансформаторами.

Но технологический прогресс двигается вперед и позволил создать переносной и легкий полуавтомат. Появившись на рынке, он быстро показал миру свои преимущества и отправил старые модели на покой.

Сегодня им доступны самые разные виды сварки: ручная дуговая сварка покрытыми (штучными) электродами (MMA), дуговая сварка плавящимся металлическим электродом в газовой среде (MAG/MIG), а также ручная дуговая сварка неплавящимся электродом в среде инертного защитного газа (TIG).

Этого удалось достичь потому что внутри аппарата находится обычный инвертор. Из этого следует, что рабочий полуавтомат можно сделать в домашних условиях, взяв за основу инвертор. В концу этой статьи вы получите все необходимые советы и знания для этого.

Содержание статьиПоказать

Как устроен полуавтомат?

Перед началом работы с любой техникой первым делом нужно ознакомиться с его конструкцией.

В каждом полуавтомате находятся два блока: силовой и подающий.

Силовой блок представлен инвертором, который подает ток. Подающий блок — это отдельное устройство, который подключают для подачи проволоки. Моток проволоки закрепляют в подающем блоке, а конец выходит возле сопла горелки.

Но для наших целей он не очень нужен. Подачу проволоки можно делать самостоятельно, однако это замедлит рабочий процесс и будет крайне неудобно.

Мы описали вам главные элементы аппарата, но этого недостаточно. Вам также понадобится заказать специальные детали, нужные для определенного типа инвертора, а также комплектующие (горелка, рукав, сопло и т.д.).

Особенности рабочего процесса

Освоить работу с полуавтоматической сваркой не так сложно, как может показаться. После прочтения этой статьи с ней справиться даже неопытный сварщик.

Начнем с того, как устроена горелка. Горелка состоит из двух механизмов которые одновременно обеспечивают подачу защитного газа и проволоки.

Первую можно регулировать самостоятельно, однако вторая осуществляется в полуавтоматическом режиме (так и появилось соответствующее название). Из-за этого у сварщика задействована в работе только та рука, которая удерживает горелку.

Вернемся к подаче защитного газа в сварочную точку. Смесь газов окружает конец проволоки и верхний слой материала, и в этой среде возникает электроразряд, который плавит заготовку с проволокой.

Размягченный металл перемешивается с проволокой, и после этого можно делать сварочный шов.

Во время сварки вы не сможете обойтись без проволоки. Газ тоже необходим, поскольку он предотвращает попадание в ванну кислорода. Но даже при отсутствии газа вы можете использовать специальной порошковой проволокой.

Самодельный полуавтомат

Есть разные подходы к созданию самодельного сварочного полуавтомата из инвертора, но мы остановимся на самых практичных и интересных.

Следуя этим инструкциям любой новичок с начальными познаниями электротехники сможет сделать это у себя дома.

Метод №1

Сконструировать полуавтоматическое сварочное устройство можно и дома, используя подручный инвертор. Без него обойтись невозможно.

Подойдет инвертор средней мощности для MMA сварки. Важно, чтобы он был в рабочем состоянии и мог выполнять простые операции.

Далее нужно поменять вольт-амперные показатели (ВАХ) для работы в полуавтоматическом режиме. Тут пригодиться ШИМ-контроллер. Отметим, что этот подход самый трудный и справиться смогут только опытные сварщики.

Необходимо сделать дроссель из дневной лампы, и переключить напряжение на обратную связь. В видеоролике, представленном ниже, вы можете узнать все подробности и схемы этого метода.

Метод №2

Этот способ сбора самодельного сварочного полуавтомата очень простой и его может освоить практически каждый человек, который имел дело с инверторной сваркой. Некоторые модели инверторов можно переключать в режим с жестким изменением ВАХ.

Если у вас есть под рукой такой аппарат, то вы с легкостью можете сделать из него полуавтомат. Останется лишь заказать внешний подающий блок.

Важно иметь под рукой соответствующие провода. Нужно лишь подключить подающий блок к инвертору и вы готовы варить. В этом случае подающий блок выступает в роли дополнения. В видеоролике ниже демонстрируются особенности такого способа.

Метод №3

Последний метод сбора самодельного сварочного полуавтомата покажется не таким простым, ведь тут вам пригодятся определенные знания и умения. Как и в предыдущем случае, вам так же понадобится инвертор-донор.

Любым аппаратом обойтись не получится, потому что необходима именно сборка ZX-7 с шунтом на выходе. Отсутствие форсажа дуги и горячего старта будет только на пользу.

Не забывайте про вольт-амперные характеристики, их тоже нужно изменить. Далее настройте нарастание тока. В зависимости от сборки инвертора, дальнейшие шаги могут отличаться в разных источниках.

Рекомендуем вам прочитать больше информации на специальных форумах. В видеоролике ниже вы можете взглянуть на работу самодельного полуавтомата.

Итог

Это вся информация, необходимая вам для того, чтобы из инвертора сделать самодельный сварочный полуавтомат. Этот инструмент пригодится вам в тех случаях, когда под рукой не будет заводской модели.

Переделав его, вы не только сэкономите деньги, но также получите новые умения в электротехнике. Такой полуавтомат не требует тщательного ухода и его можно хранить хоть в подвале, хоть в гараже.

К тому же, починка инструмента не займет у вас много времени и сил, поскольку вы прекрасно понимаете, из каких деталей он состоит.

Важно помнить, что самодельный аппарат не станет вашим идеальным помощником. Не рекомендуется использовать его длительное время.

Во многих нюансах и характеристиках он будет сильно уступать заводским моделям, и вы пойдете на риск, если будете перестраивать его в полевых условиях. Для серьезных сварочных работ будет лучше приобрести инструмент в магазине.

В этой статье мы не смогли осветить все нюансы самостоятельной сборки полуавтомата. Но этой информации вам будет вполне достаточно. Собрать дома его возможно, но процесс этот довольно трудный и не самый выгодный.

Самодельное оборудования практически всегда будет работать хуже заводского. Учитывайте это перед тем, как решитесь на такой шаг. Желаем удачи в работе!

2 Простые автоматические схемы переключения инвертора / сети переменного тока

Мне много раз задавали этот вопрос в этом блоге, как добавить переключатель выбора для автоматического переключения инвертора при наличии сети переменного тока и наоборот.

А также система должна обеспечивать автоматическое переключение зарядного устройства, чтобы при наличии сети переменного тока батарея инвертора заряжалась, а при пропадании сети переменного тока батарея соединялась с инвертором для подачи переменного тока на нагрузку.

Цель схемы

Конфигурация должна быть такой, чтобы все происходило автоматически, и приборы никогда не выключались, а просто переключались с инвертора переменного тока на сеть переменного тока и наоборот во время сбоев и восстановлений сетевого питания.

Итак, вот я с парочкой простых, но очень эффективных небольших модулей релейной сборки, которые будут выполнять все вышеперечисленные функции, не сообщая вам о реализациях, все делается автоматически, бесшумно и с большой беглостью.

1) Замена батареи инвертора

Глядя на схему, мы видим, что устройству требуется два реле, однако одно из них является реле DPDT, а другое - обычным реле SPDT.

Показанное положение реле находится в N / C направлениях, что означает, что на реле не подается питание, что, очевидно, будет при отсутствии сетевого входа переменного тока.

В этой позиции, если мы посмотрим на реле DPDT, мы обнаружим, что оно подключает выход переменного тока инвертора к приборам через свои замыкающие контакты.

Нижнее реле SPDT также находится в деактивированном положении и, как показано, соединяет батарею с инвертором, так что инвертор остается в рабочем состоянии.

Теперь предположим, что сеть переменного тока восстановлена, это мгновенно включит зарядное устройство, которое теперь работает и подает питание на катушку реле.

Реле мгновенно становятся активными и переключаются с N / C на N / O, что инициирует следующие действия:

Зарядное устройство аккумулятора подключается к аккумулятору, и аккумулятор начинает заряжаться.

Аккумулятор отключается от инвертора, поэтому инвертор становится неактивным и перестает работать.

Подключенные устройства мгновенно переключаются с инвертора переменного тока на сеть переменного тока в течение доли секунды, так что устройства даже не мигают, создавая впечатление, что ничего не произошло, и они продолжают работать непрерывно, без перебоев.

Полная версия вышеизложенного можно увидеть ниже:


2) Цепь переключения инвертора солнечной сети 10 кВА с защитой от разряда батареи

Во второй концепции ниже мы узнаем, как построить схему переключения инвертора солнечной сети 10 кВА который также включает функцию защиты от низкого заряда батареи.Идея была предложена г-ном Чанданом Парашаром.

Цели и требования схемы

  1. У меня есть система солнечных панелей с 24 панелями 24 В и 250 Вт, подключенными для генерации выходного сигнала 192 В, 6000 Вт и 24 А. Он подключен к инвертору 10 кВА, 180 В, который обеспечивает выход для питания моих приборов в дневное время. В ночное время приборы и инвертор работают от сети.
  2. Я прошу вас разработать схему, которая изменит вход инвертора с сети на солнечную энергию, как только панель начнет вырабатывать энергию, и снова переключит вход с солнечной энергии на сетку, когда наступит темнота и снизится выработка солнечной энергии.
  3. Пожалуйста, разработайте еще одну схему, которая будет распознавать тесто.
  4. Я прошу вас создать схему, которая будет определять, что батарея разряжается ниже определенного порогового значения, например 180 В (особенно в сезон дождей), и должна переключать вход с солнечной энергии на сетку, даже если вырабатывается некоторое количество солнечной энергии.

Проектирование схемы

Схема автоматического переключения солнечного / сетевого инвертора мощностью 10 кВА с защитой от разряда батареи, которая запрошена выше, может быть построена с использованием концепции, представленной на следующем рисунке:

В этой конструкции, которая может немного отличаться от схемы По запросу мы видим, как батарея заряжается от солнечной панели через схему контроллера MPPT.

Контроллер солнечной батареи MPPT заряжает аккумулятор, а также управляет подключенным инвертором через реле SPDT для облегчения пользователю бесплатного электроснабжения в дневное время.

Это реле SPDT, показанное в крайней правой части, контролирует состояние чрезмерной разрядки или ситуацию низкого напряжения батареи и отключает инвертор и нагрузку от батареи, когда оно достигает нижнего порога.

Ситуация с низким напряжением в основном может иметь место ночью, когда нет солнечного источника питания, и поэтому N / C реле SPDT соединено с источником питания адаптера переменного / постоянного тока, так что в случае низкого заряда батареи в ночное время Аккумулятор можно было заряжать от сети.

Реле DPDT также может быть засвидетельствовано подключенным к солнечной панели, и это реле отвечает за переключение сетевого питания для приборов. В дневное время, когда присутствует солнечная энергия, DPDT активирует и подключает приборы к инверторному питанию, а ночью он переключает питание на сетевое питание, чтобы сохранить батарею на случай отказа сети.

Цепь переключения реле ИБП

Следующая концепция представляет собой попытку создать простую схему переключения реле с детектором перехода через ноль, которая может использоваться в инверторах или приложениях переключения ИБП.

Может использоваться для переключения выхода с сети переменного тока на сеть инвертора при несоответствующем напряжении. Идея была предложена господином Дипаком.

Технические характеристики

Я ищу схему, состоящую из компаратора (LM 324) для управления реле. Назначение этой схемы:

1. Определить источник питания переменного тока и включить реле, когда напряжение находится в пределах 180–250 В.

2. Реле должно включиться через 5 секунд

3.Реле должно включиться после обнаружения нулевого напряжения подаваемого переменного тока (детектор нулевого напряжения). Это необходимо для сведения к минимуму искривления контактов реле.

4. Наконец, что наиболее важно, время переключения реле должно быть менее 5 мс, как это делает обычный автономный ИБП.

5. Светодиодный индикатор для индикации состояния реле.

Вышеупомянутые функции можно найти в цепи ИБП, которая немного сложна для понимания, поскольку у ИБП есть много других функциональных цепей, помимо этой.Поэтому я ищу отдельную более простую схему, которая работает только так, как упоминалось выше. Пожалуйста, помогите мне построить схему.

Доступные компоненты и другие данные:

Сеть переменного тока = 220 В

Батарея = 12 В

Компаратор = LM 324 или что-то подобное

Транзистор = BC 548 или BC 547

Доступны все типы стабилитронов

Доступны все типы резисторов

С уважением и уважением,

Deepak

Конструкция

Что касается простой схемы переключения реле ИБП, функционирование различных каскадов можно понять следующим образом:

T1 образует единственный компонент детектора нуля и срабатывает только тогда, когда полупериоды сети переменного тока близки к точкам кроссовера, которые либо ниже 0.6 В или выше -0,6 В.

Полупериоды переменного тока в основном извлекаются из выхода моста и применяются к базе T1.

A1 и A2 выполнены как компараторы для определения нижнего порога напряжения сети и верхнего порога напряжения сети соответственно.

При нормальном напряжении выходы A1 и A2 вырабатывают низкий логический уровень, удерживая T2 выключенным, а T3 включенным. Это позволяет реле оставаться включенным, питая подключенные приборы от сети.

P1 устанавливается таким образом, что напряжение на инвертирующем входе A1 становится чуть ниже, чем неинвертирующий вход, установленный R2 / R3, в случае, если напряжение сети падает ниже заданных 180V.

Когда это происходит, выход A1 переключается с низкого на высокий, срабатывая каскад релейного драйвера и выключая реле для предполагаемого переключения из режима сети в режим инвертора.

Однако это становится возможным только тогда, когда сеть R2 / R3 получает требуемый положительный потенциал от T1, который, в свою очередь, имеет место только во время перехода через ноль сигналов переменного тока.

R4 гарантирует, что A1 не заикается в пороговой точке, когда напряжение сети опускается ниже 180 В или установленной отметки.

A2 идентично A1, но он предназначен для определения верхнего предела отключения сетевого напряжения, который составляет 250 В.

Снова реализация релейного переключения выполняется только при переходах через ноль сетевого переменного тока с помощью T1.

Здесь R8 выполняет мгновенную фиксацию для обеспечения плавного переключения переключения.

C2 и C3 обеспечивают требуемую задержку времени, прежде чем T2 сможет полностью провести и включить реле. Значения могут быть соответствующим образом выбраны для достижения желаемой длительности задержки.

Принципиальная схема
Список деталей для цепи переключения реле ИБП с переходом через ноль
  • R1 = 1k
  • R2, R3, R4, R6, R7, R8 = 100K
  • P1, P2 = 10K PRESET
  • R5, R9 = 10K
  • D3, D4 --- D10 = 1N4007
  • C1, C2 = 1000 мкФ / 25 В
  • T1 = BC557
  • T2 = BC547
  • Z1 = 3V ZENER
  • A1 / A2 = 1/2 IC LM324
  • RL / 1 = 12V, SPSDT RELAY
  • TR / 1 = 0-12V STEP DOWN TRASFORMER
О компании Swagatam

Я инженер-электронщик (dipIETE), любитель, изобретатель, разработчик схем / печатных плат, производитель.Я также являюсь основателем веб-сайта: https://www.homemade-circuits.com/, где я люблю делиться своими инновационными идеями и руководствами по схемам.
Если у вас есть запрос, связанный со схемой, вы можете взаимодействовать с ним через комментарии, я буду очень рад помочь!

.

7 простых инверторных схем, которые вы можете построить дома

Эти 7 инверторных схем могут показаться простыми с их конструкцией, но способны обеспечить достаточно высокую выходную мощность и КПД около 75%. Узнайте, как собрать этот дешевый мини-инвертор и запитать небольшие приборы на 220 или 120 В, такие как сверлильные станки, светодиодные лампы, лампы CFL, фен, мобильные зарядные устройства и т. Д., От аккумулятора 12 В 7 Ач.

Что такое простой инвертор

Инвертор, который использует минимальное количество компонентов для преобразования 12 В постоянного тока в 230 В переменного тока, называется простым инвертором.Свинцово-кислотная батарея на 12 В является наиболее стандартной формой батареи, которая используется для работы таких инверторов.

Начнем с самого простого из списка, в котором используется пара транзисторов 2N3055 и несколько резисторов.

1) Схема простого инвертора на транзисторах с перекрестной связью

В статье рассматриваются детали конструкции мини-инвертора. Прочтите, чтобы узнать о процедуре построения базового инвертора, который может обеспечивать достаточно хорошую выходную мощность, но при этом очень доступный и элегантный.

В Интернете и электронных журналах может быть огромное количество инверторных схем. Но эти схемы зачастую представляют собой очень сложные и высокотехнологичные инверторы.

Таким образом, у нас не остается выбора, кроме как задаваться вопросом, как построить силовые инверторы, которые могут быть не только простыми в сборке, но также дешевыми и высокоэффективными в работе.

Схема инвертора от 12 В до 230 В

На этом ваши поиски такой схемы заканчиваются. Описанная здесь схема инвертора, пожалуй, самая маленькая по количеству компонентов, но при этом достаточно мощная, чтобы удовлетворить большинство ваших требований.

Порядок сборки

Для начала убедитесь, что для двух транзисторов 2N3055 установлены подходящие радиаторы. Его можно изготовить следующим образом:

  • Вырежьте два листа алюминия по 6/4 дюйма каждый.
  • Согните один конец листа, как показано на схеме. Просверлите отверстия подходящего размера на изгибах, чтобы его можно было надежно закрепить на металлическом шкафу.
  • Если вам сложно изготовить этот радиатор, вы можете просто приобрести его в местном магазине электроники, показанном ниже:
  • Также просверлите отверстия для установки силовых транзисторов.Отверстия диаметром 3мм, типоразмер ТО-3.
  • Плотно закрепите транзисторы на радиаторах с помощью гаек и болтов.
  • Подключите резисторы перекрестной связью непосредственно к выводам транзисторов в соответствии с принципиальной схемой.
  • Теперь присоедините радиатор, транзистор, резистор в сборе ко вторичной обмотке трансформатора.
  • Закрепите всю схему вместе с трансформатором внутри прочного, хорошо вентилируемого металлического корпуса.
  • Смонтируйте выходные и входные гнезда, держатель предохранителя и т. Д. Снаружи шкафа и подсоедините их соответствующим образом к схемному узлу.

После завершения вышеуказанной установки радиатора вам просто нужно соединить несколько резисторов высокой мощности и 2N3055 (на радиаторе) с выбранным трансформатором, как показано на следующей схеме.

Полная схема подключения

После того, как вышеуказанная проводка будет завершена, пора подключить ее к батарее 12 В 7 Ач с лампой на 60 Вт, прикрепленной к вторичной обмотке трансформатора.При включении в результате будет мгновенное освещение груза с поразительной яркостью.

Здесь ключевым элементом является трансформатор, убедитесь, что трансформатор действительно рассчитан на 5 ампер, иначе вы можете обнаружить, что выходная мощность намного меньше ожидаемой.

Я могу сказать это по своему опыту, я построил это устройство дважды, один раз, когда я учился в колледже, и второй раз недавно, в 2015 году. Хотя я был более опытным во время недавнего предприятия, я не смог получить потрясающую мощность, которая Приобрел от своего предыдущего агрегата.Причина была проста: предыдущий трансформатор представлял собой надежный, изготовленный по индивидуальному заказу трансформатор 9-0-9В на 5 ампер, по сравнению с новым, в котором я, вероятно, использовал ложно рассчитанный 5 ампер, что на самом деле было всего 3 ампер на его выходе.

Перечень деталей

Для конструкции вам потребуются только следующие компоненты:

  • R1, R2 = 100 Ом. / 10 Вт намотка провода
  • R3, R4 = 15 Ом / 10 Вт намотка провода
  • T1 , Т2 = 2Н3055 СИЛОВЫЕ ТРАНЗИСТОРЫ (МОТОРОЛА).
  • ТРАНСФОРМАТОР = 9-0-9 Вольт /8 Ампер или 5 ампер.
  • АВТОМОБИЛЬНАЯ АККУМУЛЯТОРНАЯ БАТАРЕЯ = 12 В / 10 Ач
  • АЛЮМИНИЕВЫЙ РАДИАТОР = ОТРЕЗАТЬ ДО ТРЕБУЕМОГО РАЗМЕРА.
  • ВЕНТИЛИРУЕМЫЙ МЕТАЛЛИЧЕСКИЙ ШКАФ = СООТВЕТСТВИЕ РАЗМЕРАМ ВСЕГО УЗЛА

Видео-тестовая проба

Как это проверить?

  • Тестирование этого мини-инвертора выполняется следующим методом:
  • Для тестирования подключите лампу накаливания мощностью 60 Вт к выходному разъему инвертора.
  • Затем подключите полностью заряженный автомобильный аккумулятор 12 В к его клеммам питания.
  • Лампа мощностью 60 Вт должна сразу же ярко загореться, указывая на то, что инвертор работает нормально.
  • На этом конструирование и тестирование схемы инвертора завершается.
  • Я надеюсь, что из приведенных выше обсуждений вы, должно быть, ясно поняли, как построить инвертор, который не только прост в сборке, но и очень доступен для каждого из вас.
  • Может использоваться для питания небольших электроприборов, таких как паяльник, лампы КЛЛ, небольшие портативные вентиляторы и т. Д.Выходная мощность будет около 70 Вт и зависит от нагрузки.
  • КПД этого инвертора составляет около 75%. Устройство может быть подключено к аккумуляторной батарее вашего автомобиля, когда вы находитесь на улице, так что проблема с переносом дополнительной батареи устранена.

Работа схемы

Работа этой схемы мини-инвертора довольно уникальна и отличается от обычных инверторов, в которых для питания транзисторов используется каскад дискретного генератора.

Однако здесь две секции или два плеча схемы работают в регенеративном режиме.Это очень просто и может быть понято с помощью следующих пунктов:

Две половины схемы, независимо от того, насколько они согласованы, всегда будут иметь небольшой дисбаланс в параметрах, окружающих их, таких как резисторы, Hfe, витки обмотки трансформатора и т. Д.

Из-за этого обе половины не могут проводить вместе одновременно.

Предположим, что первыми проводят ток верхние полупроводниковые транзисторы, очевидно, они будут получать свое напряжение смещения через нижнюю половину обмотки трансформатора через R2.

Однако в тот момент, когда они насыщаются и проводят полную проводку, все напряжение батареи передается через их коллекторы на землю.

Отсасывает любое напряжение через R2 к их базе, и они немедленно прекращают проводить.

Это дает возможность нижним транзисторам проводить, и цикл повторяется.

Таким образом, вся цепь начинает колебаться.

Базовые эмиттерные резисторы используются для определения определенного порога разрыва их проводимости, они помогают установить базовый опорный уровень смещения.

Вышеупомянутая схема была вдохновлена ​​следующим дизайном Motorola:


ОБНОВЛЕНИЕ: Вы также можете попробовать это: Схема мини-инвертора 50 Вт


Форма выходного сигнала лучше, чем прямоугольная (разумно подходит для все электронные устройства))

Конструкция печатной платы для описанной выше простой схемы инвертора 2N3055 (схема расположения рельсов)

2) Использование IC 4047

Как показано выше, простой, но полезный маленький инвертор можно построить, используя всего один IC 4047.IC 4047 - это универсальный генератор с одиночной интегральной схемой, который обеспечивает точные периоды включения / выключения на своих выходных контактах №10 и №11. Частоту здесь можно определить, точно рассчитав резистор R1 и конденсатор C1. Эти компоненты определяют частоту колебаний на выходе ИС, которая, в свою очередь, устанавливает выходную частоту 220 В переменного тока этой схемы инвертора. Он может быть установлен на 50 Гц или 60 Гц в зависимости от индивидуальных предпочтений.

Аккумулятор, МОП-транзистор и трансформатор можно модифицировать или модернизировать в соответствии с требуемой выходной мощностью инвертора.

Для расчета значений RC и выходной частоты, пожалуйста, обратитесь к таблице данных IC

Результаты тестирования видео

3) Использование IC 4049

Информация о контактах IC 4049

В этом простом инверторе Мы используем одну микросхему IC 4049, которая включает в себя 6 вентилей НЕ или 6 инверторов внутри. На диаграмме выше N1 ---- N6 обозначают 6 вентилей, которые сконфигурированы как каскады генератора и буфера. Вентили НЕ N1 и N2 в основном используются для каскада генератора, C и R могут быть выбраны и зафиксированы для определения частоты 50 Гц или 60 Гц в соответствии со спецификациями страны

Остальные ворота N3 - N6 настраиваются и конфигурируются как буферы и инверторы, так что конечный результат приводит к генерации чередующихся импульсов переключения для силовых транзисторов.Конфигурация также гарантирует, что никакие вентили не останутся неиспользованными и простаивающими, что в противном случае может потребовать, чтобы их входы были терминированы отдельно по линии питания.

Трансформатор и аккумулятор можно выбрать в соответствии с требованиями к мощности или мощностью нагрузки.

На выходе будет чисто прямоугольная волна.

Формула для расчета частоты имеет следующий вид:

f = 1 /1.2RC,

где R будет в Ом, а F в Фарадах

4) Использование IC 4093

Информация о контакте IC 4093

Очень похоже на предыдущий инвертор с логическим элементом НЕ, простой инвертор на основе логического элемента И-НЕ, показанный выше, может быть построен с использованием одной микросхемы 4093.Створки с N1 по N4 обозначают 4 затвора внутри IC 4093.

N1 подключен как схема генератора для генерации необходимых импульсов 50 или 60 Гц. Они соответствующим образом инвертируются и буферизируются с использованием оставшихся вентилей N2, N3, N4, чтобы, наконец, передать чередующуюся частоту переключения между базами силовых BJT, которые, в свою очередь, переключают силовой трансформатор с заданной скоростью для выработки необходимых 220 В или 120 В. Переменный ток на выходе.

Хотя здесь подойдет любая ИС логического элемента NAND, рекомендуется использовать IC 4093, поскольку в ней есть функция триггера Шмидта, которая обеспечивает небольшую задержку переключения и помогает создать своего рода мертвое время на коммутационных выходах, гарантируя, что питание устройства никогда не включаются вместе даже на долю секунды.

5) Еще один простой инвертор с затвором NAND с использованием полевых МОП-транзисторов

В следующих параграфах объясняется еще одна простая, но мощная схема инвертора, которая может быть создана любым энтузиастом электроники и использоваться для питания большинства бытовых электроприборов (резистивных нагрузок и нагрузок SMPS) .

Использование пары МОП-транзисторов влияет на мощный отклик схемы, состоящей из очень небольшого количества компонентов, однако конфигурация прямоугольной волны действительно ограничивает использование устройства довольно большим количеством полезных приложений.

Введение

Расчет параметров полевого МОП-транзистора может показаться сложным, однако, следуя стандартной конструкции, заставить эти замечательные устройства действовать определенно легко.

Когда мы говорим о схемах инвертора с выходами мощности, полевые МОП-транзисторы обязательно становятся частью конструкции, а также основным компонентом конфигурации, особенно на выходных концах схемы.

Инверторные схемы являются фаворитами этих устройств, поэтому мы будем обсуждать одну такую ​​конструкцию, включающую полевые МОП-транзисторы для питания выходного каскада схемы.

На схеме мы видим очень простую конструкцию инвертора, включающую каскад прямоугольного генератора, буферный каскад и выходной каскад мощности.

Использование одной ИС для генерации требуемых прямоугольных волн и для буферизации импульсов, в частности, упрощает разработку конструкции, особенно для начинающих энтузиастов электроники.

Использование IC 4093 вентилей И-НЕ для схемы генератора

IC 4093 - это ИС триггера Шмидта с четырьмя вентилями И-НЕ, одиночный И-НЕ подключен как нестабильный мультивибратор для генерации базовых прямоугольных импульсов.Номинал резистора или конденсатора может быть отрегулирован для получения импульсов частотой 50 или 60 Гц. Для приложений 220 В необходимо выбрать вариант 50 Гц, а для версий на 120 В. - 60 Гц.

Выход из вышеупомянутого каскада генератора связан с парой дополнительных логических элементов И-НЕ, используемых в качестве буферов, выходы которых в конечном итоге завершаются затвором соответствующих полевых МОП-транзисторов.

Два логических элемента И-НЕ соединены последовательно, так что два полевых МОП-транзистора получают поочередно противоположные логические уровни от каскада генератора и попеременно переключают полевые МОП-транзисторы для создания желаемой индукции во входной обмотке трансформатора.

Коммутация Mosfet

Вышеупомянутое переключение полевых МОП-транзисторов направляет весь ток батареи в соответствующие обмотки трансформатора, вызывая мгновенное повышение мощности на противоположной обмотке трансформатора, где в конечном итоге выводится выход на нагрузку. .

МОП-транзисторы способны выдерживать ток более 25 ампер, а их диапазон довольно велик, поэтому они подходят для управления трансформаторами с различными характеристиками мощности.

Это просто вопрос модификации трансформатора и батареи для создания инверторов различных диапазонов с разной выходной мощностью.

Список деталей для объясненной выше принципиальной схемы инвертора на 150 Вт:
  • R1 = 220K pot, необходимо установить для получения желаемой выходной частоты.
  • R2, R3, R4, R5 = 1K,
  • T1, T2 = IRF540
  • N1 — N4 = IC 4093
  • C1 = 0,01 мкФ,
  • C3 = 0,1 мкФ

TR1 = входная обмотка 0-12 В , ток = 15 А, выходное напряжение в соответствии с требуемыми характеристиками

Формула для расчета частоты будет идентична описанной выше для IC 4049.

f = 1 / 1.2RC. где R = R1 установленное значение, а C = C1

6) Использование IC 4060

Если у вас есть одна микросхема 4060 в вашем электронном ящике, вместе с трансформатором и несколькими силовыми транзисторами, вы, вероятно, все настроены на Создайте свою простую схему инвертора мощности, используя эти компоненты. Базовая конструкция предлагаемой схемы инвертора на основе IC 4060 может быть представлена ​​на диаграмме выше. Концепция в основном та же, мы используем IC 4060 в качестве генератора и настраиваем его выход для создания поочередно переключающихся импульсов через транзисторный каскад инвертора BC547.

Так же, как IC 4047, IC 4060 требует внешних RC-компонентов для настройки своей выходной частоты, однако выход IC 4060 ограничен 10 отдельными выводами в определенном порядке, при этом выходная частота генерирует частоту со скоростью, вдвое превышающей его предыдущей распиновки.

Хотя вы можете найти 10 отдельных выходов с удвоенной частотой по выводам IC, мы выбрали вывод 7, поскольку он обеспечивает самую быструю частоту среди остальных и, следовательно, может выполнить это, используя стандартные компоненты для RC. сеть, которая может быть легко доступна вам независимо от того, в какой части земного шара вы находитесь.

Для расчета значений RC для R2 + P1 и C1 и частоты вы можете использовать формулу, как описано ниже:

Или другой способ - использовать следующую формулу:

f (osc) = 1 / 2.3 x Rt x Ct

Rt в омах, Ct в фарадах

Более подробную информацию можно получить из этой статьи

Вот еще одна крутая идея инвертора DIY, которая чрезвычайно надежна и использует обычные детали для реализации конструкции инвертора высокой мощности. и может быть повышен до любого желаемого уровня мощности.

Давайте узнаем больше об этой простой конструкции

7) Простейший инвертор на 100 Вт для новичков

Схема простого инвертора на 100 Вт, описанная в этой статье, может считаться наиболее эффективным, надежным, простым в сборке и мощным инвертором дизайн. Он эффективно преобразует любые 12 В в 220 В с использованием минимального количества компонентов.

Введение

Идея была опубликована много лет назад в одном из журналов по электронике Elecktor. Я представляю ее здесь, чтобы вы все могли создать и использовать эту схему для своих личных приложений.Узнаем больше.

Предлагаемая простая схема инвертора на 100 ватт была опубликована довольно давно в одном из электронных журналов elektor, и, на мой взгляд, эта схема - одна из лучших схем инвертора, которую вы можете получить.

Я считаю его лучшим, потому что конструкция хорошо сбалансирована, хорошо рассчитана, использует обычные детали, и если все будет сделано правильно, то сразу заработает.

Эффективность этой конструкции составляет около 85%, что хорошо, учитывая простой формат и низкую стоимость.

Использование нестабильного транзистора в качестве генератора 50 Гц

В основном вся конструкция построена вокруг каскада нестабильного мультивибратора, состоящего из двух маломощных транзисторов общего назначения BC547 вместе с соответствующими частями, состоящими из двух электролитических конденсаторов и некоторых резисторов.

Этот каскад отвечает за генерацию основных импульсов 50 Гц, необходимых для запуска работы инвертора.

Вышеупомянутые сигналы относятся к низким текущим уровням и, следовательно, требуют повышения до более высоких уровней.Это делается с помощью транзисторов драйвера BD680, которые по своей природе являются дарлингтонскими.

Эти транзисторы принимают сигналы малой мощности с частотой 50 Гц от транзисторных каскадов BC547 и поднимают их при более высоких уровнях тока, чтобы их можно было подать на выходные транзисторы.

Выходные транзисторы представляют собой пару 2N3055, которые получают усиленный ток в своих базах от вышеупомянутого каскада драйвера.

Транзисторы 2N3055 как силовой каскад

Транзисторы 2N3055, таким образом, также работают с высоким уровнем насыщения и высоким током, который попеременно накачивается в соответствующие обмотки трансформатора и преобразуется в требуемые напряжения переменного тока 220 В на вторичной обмотке трансформатора.

Список деталей для объясненной выше простой схемы инвертора на 100 Вт
  • R1, R2 = 27K, 1/4 Вт 5%
  • R3, R4, R5, R6 = 330 Ом, 1/4 Вт 5%
  • R7, R8 = 22 ОМ, ТИП НАВИВКИ ПРОВОДА 5 Вт
  • C1, C2 = 470nF
  • T1, T2 = BC547,
  • T3, T4 = BD680, ИЛИ TIP127
  • T5, T6 = 2N3055,
  • D1, D2 = 1N5402
  • ТРАНСФОРМАТОР = 9-0-9 В, 5 ампер
  • БАТАРЕЯ = 12 В, 26 Ач,

Радиатор для T3 / T4 и T5 / T6

Технические характеристики:

  1. Выходная мощность: 100 Вт если на каждом канале используются одиночные транзисторы 2n3055.
  2. Частота: 50 Гц, прямоугольная волна,
  3. Входное напряжение: 12 В при 5 А для 100 Вт,
  4. Выходное напряжение: 220 В или 120 В (с некоторыми настройками)

Из приведенного выше обсуждения вы можете почувствовать себя полностью осведомленным относительно как построить эти 7 простых инверторных схем, сконфигурировав данную базовую схему генератора с BJT-каскадом и трансформатором, и включив очень обычные детали, которые могут уже существовать у вас или быть доступными при утилизации старой собранной печатной платы.

Как рассчитать резисторы и конденсаторы для частот 50 Гц или 60 Гц

В этой транзисторной схеме инвертора конструкция генератора построена с использованием транзисторной нестабильной схемы.

В основном резисторы и конденсаторы, связанные с базами транзисторов, определяют частоту выхода. Хотя они правильно рассчитаны для получения частоты приблизительно 50 Гц, если вы хотите дополнительно настроить выходную частоту в соответствии с собственными предпочтениями, вы можете легко сделать это, рассчитав их с помощью этого калькулятора нестабильного мультивибратора .

Универсальный двухтактный модуль

Если вы заинтересованы в достижении более компактной и эффективной конструкции с помощью простой двухпроводной двухтактной конфигурации трансформатора, вы можете попробовать следующую пару концепций

В первом из них используется IC 4047 вместе с парой полевых МОП-транзисторов с каналом p и n:

Если вы хотите использовать какой-либо другой каскад генератора в соответствии с вашими предпочтениями, в этом случае вы можете применить следующую универсальную конструкцию.

Это позволит вам интегрировать любой желаемый каскад генератора и получить требуемый двухтактный выход 220 В.

Кроме того, он также имеет встроенное зарядное устройство с автоматическим переключением.

Преимущества простого двухтактного инвертора

Основными преимуществами этой универсальной конструкции двухтактного инвертора являются:

  • В нем используется 2-проводный трансформатор, что делает конструкцию высокоэффективной с точки зрения размера и выходной мощности.
  • Он включает в себя переключение с зарядным устройством, которое заряжает батарею при наличии сети, а во время сбоя сети переключается в инверторный режим, используя ту же батарею для выработки намеченных 220 В от батареи.
  • Он использует обычные p-канальные и N-канальные MOSFET без каких-либо сложных схем.
  • Он дешевле в сборке и более эффективен, чем аналог центрального смесителя.
УНИВЕРСАЛЬНЫЙ МОДУЛЬ МОП-транзистора с вытяжным приводом, который будет взаимодействовать с любой желаемой ЦЕПЬ ОСЦИЛЛЯТОРА

Для опытных пользователей

Выше было объяснено несколько простых схем инвертора, однако, если вы думаете, что они довольно обычные для вас, вы всегда можете изучить более продвинутые проекты, представленные на этом веб-сайте.Вот еще несколько ссылок для справки:


Другие проекты инверторов для вас с полной онлайн-справкой!


О компании Swagatam

Я инженер-электронщик (dipIETE), любитель, изобретатель, разработчик схем / печатных плат, производитель. Я также являюсь основателем веб-сайта: https://www.homemade-circuits.com/, где я люблю делиться своими инновационными идеями и руководствами по схемам.
Если у вас есть какие-либо вопросы, связанные со схемой, вы можете взаимодействовать с ними через комментарии, я буду очень рад помочь!

.

Автоматическое включение вентилятора инвертора в режимах зарядки и инвертирования

В сообщении объясняется простой метод автоматического включения вентилятора инвертора всякий раз, когда блок работает в режиме зарядки или инверторного режима, чтобы обеспечить оптимальное охлаждение внутренних силовых устройств . Идея была предложена г-ном Судипом Бепари.

Цели и требования схемы

  1. Я только что купил новую синусоидальную карту ИБП (850 ВА) (pic16f72) ... Она работает хорошо.Но на этой плате нет клеммы вентилятора охлаждения.
  2. Мой трансформатор и Mosfet нагреваются при инвертировании и зарядке.
  3. Итак, ответьте мне надлежащим руководством по подключению охлаждения постоянного тока на этой плате, при котором вентилятор может включаться во время зарядки и инвертирования.
  4. Помогите, пожалуйста, с этой проблемой.

Конструкция

Запрошенная идея для цепи автоматического включения инверторного вентилятора, когда инвертор находится в инвертирующем режиме или режиме зарядки, может быть реализована с использованием следующей поясненной концепции:

Как можно увидеть на На рисунке минус батареи соединен с последовательным резистором Rx, так что любой ток от зарядного устройства или от инвертора проходит через этот резистор во время любых операций.

Это означает, что во время любой из операций резистор Rx может генерировать пропорциональное падение потенциала на самом себе, позволяя подключенной измерительной цепи реагировать на это развиваемое напряжение.

Можно также увидеть мостовой выпрямитель, подключенный к Rx, чтобы он всегда вырабатывал напряжение одной полярности независимо от полярности тока, который может проходить через Rx.

Например, при зарядке батареи полярность тока может быть противоположной по сравнению с полярностью инвертирующего режима, однако мостовой выпрямитель корректирует обе возможности и предлагает выход с одной полярностью для следующего каскада, который является каскадом оптопары.

Светодиод оптопары загорается всякий раз, когда батарея работает каким-либо способом, и это мгновенно преобразуется в напряжение запуска для BJT 2N2222, связанного с транзистором оптопары.

2N2222 вместе с оптранзистором настроен в режиме Дарлингтона, чтобы гарантировать высокий коэффициент усиления для пар BJT, который, в свою очередь, гарантирует, что значение Rx может быть выбрано как можно меньшим, тем самым обеспечивая минимальное сопротивление для инвертора. операции.

Как только 2N2222 проводит ток, он включает подключенный вентилятор, который начинает охлаждение важных устройств инвертора и гарантирует, что они никогда не будут горячими и уязвимыми во время процесса зарядки или когда инвертор находится в режиме инвертирования.

Расчет резистора ограничителя тока

Значение Rx можно выбрать методом проб и ошибок. Можно ожидать, что светодиод будет немного светиться при напряжении около 0,7 В, поэтому формула для расчета Rx может быть выражена как

R = V / I = 0,7 / I

I (current0) можно выбрать равным 50%. расчетного зарядного тока, поскольку при этом токе можно ожидать, что силовые устройства только нагреваются.

Предположим, что если зарядный ток составляет 10 ампер, формулу можно обработать следующим образом:

R = 0.7/5 = 0,14 Ом

Аналогичным образом можно рассчитать другие пропорциональные значения Rx для успешного инициирования предложенного автоматического включения инверторного вентилятора во время зарядки и режима инвертирования устройства.

О компании Swagatam

Я инженер-электроник (dipIETE), любитель, изобретатель, разработчик схем / печатных плат, производитель. Я также являюсь основателем веб-сайта: https://www.homemade-circuits.com/, где я люблю делиться своими инновационными идеями и руководствами по схемам.
Если у вас есть какие-либо вопросы, связанные со схемой, вы можете взаимодействовать с ними через комментарии, я буду очень рад помочь!

.

Трехфазный инверторный полуавтоматический сварочный аппарат Барабанный сварочный аппарат

Описание продукта

Основные характеристики

Точечный сварщик + Шовный сварщик Полуавтоматический сварочный аппарат
Количество рабочих 3 1
Производительность 180 барабанов / час 210 барабанов / час
Качество отделки сварки Низкое Высокое

Главный компонент

Устройство Параметр
Напряжение питания В 380
Номинальная мощность кВА 150
Толщина катушки мм 0.6-1,5
Диаметр барабана мм 300-600
Диапазон длины барабана мм 400-1100
Давление сжатого воздуха источника воздуха МПа 0,5

Функция

Производительность барабана 200 л до 240 д / ч
Фронтальная загрузка предварительно прокатанных листов
Автоматический контроль перекрытия
Автоматическая сварка барабана (без помощи оператора)
Цифровое управление параметрами сварки постоянным током - легко и просто для использования
Цельнометаллическая вторичная обмотка для высокого КПД
Кованые медные валы для длительного срока службы
Легко заменяемые кованые медные электроды
Высокопроизводительный полностью герметизированный трансформатор мощностью 150 кВА
Устройство для обрезки электродов
Полностью водяное охлаждение
Опционально для подающих и отводящих конвейеров, трехфазная сварка органы управления

.

Смотрите также