Вход на сайт

Зарегистрировавшись на сайте Вы сможете добавлять свои материалы






Частотник самодельный схема


Частотный преобразователь своими руками - с асинхронным приводом

Частотный преобразователь своими руками

Частотный преобразователь своими руками — представляю вам небольшую статью о асинхронном двигателе и частотном преобразователе, который мне ранее приходилось делать. Вот и теперь потребовался хороший привод для циркулярной пилы. Конечно можно было бы взять в магазине фирменный частотник, но все-таки вариант самостоятельного изготовления оказался для меня наиболее приемлемым.

К тому же, качество регулировки скорости привода пилорамы не требовало абсолютной точности. Однако с нагрузками ударного типа и длительными перегрузками он должен справляться. К тому же хотелось сделать управление наиболее простым, без всяких там параметров, а просто установить пару кнопок.

Главные преимущества привода с регулировкой частоты:

  • Создаем из однофазного напряжения 220v полновесные три фазы 220v, сдвиг у которых будет 120°, при этом получаем абсолютный вращательный момент с мощностью на валу
  • Повышенный момент старта с плавным запуском без максимального пускового тока
  • Нет сильного замагничивания и излишнего перегрева мотора, как это бывает когда применяются конденсаторы
  • При необходимости можно свободно управлять скоростью вращения и менять направление

Ниже показана принципиальная схема устройства:

Трехфазный мост выполнен на гибридных IGBT транзисторах c диодами обратной проводимости. В целом это представляет собой бустрепное управление микроконтроллером PIC16F628A, осуществляемое с помощью специализированных оптодрайверов HCPL-3120. Во входном тракте установлен конденсатор гашения напряжения, выполняющего функцию мягкой зарядки электролитических конденсаторов в цепи постоянного напряжения.

Быстродействующая защита

Далее по схеме он зашунтирован электромагнитным реле, при этом на PIC16F628A подается цифровой логический уровень готовности. В схеме предусмотрена быстродействующая защита по току от короткого замыкания и критической перегрузке мотора, выполненная по триггерной схеме. Все это управляется при помощи двух кнопок и одного переключателя, который изменяет направление вращения вала.

Частотный преобразователь своими руками, в частности участок силовых напряжений был собран методом навесного монтажа, а контроллер размещен на печатной плате, которая показана ниже:

Постоянные резисторы с номиналом 270к, шунтирующие конденсаторы установленные в цепи затвора IGBT, запаял со стороны дорожек, так как упустил из виду сделать для них площадки. Их конечно можно заменить на smd.

Здесь показано фото печатной платы контроллера после распайки компонентов:

А это с противоположной стороны

Для подачи напряжения питания в модуль управления был изготовлен стандартный обратноходовой импульсный источник питания.

Принципиальная схема блока питания:

Чтобы изготовить частотный преобразователь своими руками в принципе можно использовать практически любой источник питания с выходным напряжением 24v. Однако, этот блок питания должен быть стабилизированный и с задержкой напряжения на выходе с момента исчезновения напряжения сети, хотябы в пределах 3-х секунд. Это обусловлено тем, что двигатель смог отключится в случае возникновения ошибки по DC. Достигается подбором электролитического конденсатора С1 с большим значением емкости.

Ну, а теперь нужно подробнее разобраться в самом важном компоненте данного устройства — в программе микроконтроллера. В интернете подходящей для меня информации по этому вопросу я не нашел, хотя были предложения установить специальные фирменные контроллеры. Но как я уже говорил, мне принципиально нужно было установить, что-то собственной разработки. Приступил во всех подробностях анализировать ШИМ модуляцию, в какое время и каким способом открыть определенный транзистор…

Программа формирования задержек

Выяснились некоторые закономерности и получился образец несложной программы формирования задержек. При ее использовании получается произвести достаточно хорошую синусоидальную ШИМ с возможностью изменять напряжение. Естественно контроллер делать какие либо вычисления не успевал, задержки не давали того эффекта, который был нужен. Следовательно, такой вариант обсчитывания ШИМ на микроконтроллере PIC16F628A я забраковал сразу.

В результате образовалась констант матрица, а ее уже отрабатывал PIC16F628A. Они формировали и диапазон частоты и напряжение питания. Конечно эта работа по созданию данного устройства несколько затянулась. Циркуляркой уже полным ходом пилили на конденсаторах, когда появился необходимый вариант прошивки. Первоначально тестировал схему на моторе от вентилятора, мощностью 180 Вт. Вот фото прибора на стадии экспериментальных работ:

Тестирование устройства

Чуть позже, в процессе испытания программа подвергалась усовершенствованию, а после запуска двигателя мощностью на 4 кВт я практически был удовлетворен итогом своей работы. Защита от короткого замыкания прекрасно срабатывает, полутора-киловаттный мотор на 1440об/мин с диском 300мм свободно справлялся с приличными брусками. Шкивы были установлены одинаковые, что на двигатель, что на вал циркулярки. При попадании пилы на сучок сетевое напряжение немного падало, хотя двигатель продолжал работать.

По ходу работы потребовалось немного натянуть ремень, поскольку при увеличении нагрузки он начинал скользить на шкиве. В дальнейшем применили двойную передачу. Но на этом решил не останавливаться, поэтому сейчас начал усовершенствовать программу, в итоге она будет значительно эффективней. Принцип работы ШИМ-контролера немного усложняется, появится больше режимов, появится ресурс раскручивания выше номинального значения.

В конце статьи файлы для того самого простого варианта устройства, которое прекрасно работает с циркулярной пилой уже больше года.

Характеристики:

  • Частота на выходе: 2,5-50Гц, шаг 1,25Гц; Частота ШИМ-контроллера синхронная, с возможностью изменения. Диапазон частот в пределах 1750-3350Гц.; Скалярное управление частотным преобразователем, мощность мотора около 4кВт. Самая меньшая частота работы при разовом нажатии кнопки «Пуск» — составляет 10Гц.
  • Во время удержании кнопки нажатой появляется разгоняющий момент, а когда кнопка отпускается, то частота буде той, до какой смог разогнаться. Частота по максимуму — 50Гц информирует светодиодный индикатор. Номинальное время разгоняющего момента составляет 2 секунды.
  • Индикатор «Готов» сообщает о готовности устройства к старту двигателя.

Файлы:
Программа ШИММ1.0r для PIC16F628(A)
Плата управления в SPLANe

3 Объяснение схем преобразователя частоты в напряжение

Как следует из названия, преобразователи частоты в напряжение - это устройства, которые преобразуют переменную входную частоту в соответствующие уровни выходного напряжения.

Здесь мы изучаем три простых, но продвинутых проекта с использованием IC 4151, IC VFC32 и IC LM2907.

1) Использование IC 4151

Эта схема преобразователя частоты и напряжения, использующая IC 4151, характеризуется высокой степенью линейности преобразования. При указанных значениях частей коэффициент преобразования схемы может быть около 1 В / кГц.

Когда на входе используется напряжение постоянного тока с частотой 0 Гц, на выходе генерируется соответствующее напряжение 0 В. Коэффициент преобразования на выходе никогда не зависит от рабочего цикла входной среднеквадратичной частоты.

Но, если на вход подается синусоидальная частота, в этой ситуации сигнал должен быть пропущен через триггер Шмитта, прежде чем подавать его на вход IC 4151.

Если вас интересует другой коэффициент преобразования, вы можете рассчитать его по следующей формуле:

В (выход) / f (вход) = R3 x R7 x C2 / 0.486 (R4 + P1) x [В / Гц]

T1 = 1,1 x R3 x C2

Цепь может быть даже подключена к выходу преобразователя напряжения в частоту и использоваться как способ отправки сигналов постоянного тока по удлиненному кабелю подключение без проблем с сопротивлением кабеля, ослабляющим сигнал.

2) Использование конфигурации VFC32

В предыдущем посте объяснялась простая однокристальная схема преобразователя напряжения в частоту с использованием микросхемы VFC32, здесь мы узнаем, как ту же микросхему можно использовать для достижения частоты, противоположной схеме преобразователя напряжения.

На рисунке ниже изображена другая стандартная конфигурация VFC32, которая позволяет ему работать как схема преобразователя частоты в напряжение.

Входной каскад, образованный емкостной цепью C3, R6 и R7, обеспечивает совместимость входа компаратора со всеми логическими триггерами 5 В. Компаратор, в свою очередь, переключает соответствующий одноразовый каскад на каждом заднем фронте подаваемых входных импульсов частоты.

Принципиальная схема

Пороговое значение входного задания, установленное для компаратора детектора, составляет около –0.7В. В случае, когда входные частоты может быть ниже, чем 5 В, потенциал делитель R6 / R7, может быть соответствующим образом скорректированы для изменения опорного уровня и для обеспечения надлежащего обнаружения входов низких частот уровня на операционных усилителях.

Как показано на графике в предыдущей статье, значение C1 может быть выбрано в зависимости от полного диапазона триггеров частотного входа.

C2 отвечает за фильтрацию и сглаживание формы волны выходного напряжения, большие значения C2 помогают добиться лучшего контроля над пульсациями напряжения на сгенерированном выходе, но отклик медленный на быстро меняющиеся входные частоты, тогда как меньшие значения C2 вызывают плохую фильтрацию но предлагают быстрый отклик и настройку с быстро меняющимися входными частотами.

Значение

R1 можно настроить для достижения настраиваемого диапазона выходного напряжения полного отклонения относительно заданного диапазона входной частоты полного диапазона.

Как работает схема преобразователя частоты в напряжение

Основная работа предлагаемой схемы преобразователя частоты в напряжение основана на теории заряда и баланса. Частота входного сигнала вычисляется так, чтобы соответствовать выражению V) (in) / R1, и это значение обрабатывается соответствующим операционным усилителем IC посредством интегрирования с помощью C2.Результат этого интегрирования приводит к падению выходного напряжения интегрирования рампы.

Пока происходит вышеупомянутое, срабатывает следующий каскад однократного включения, соединяя опорный ток 1 мА со входом интегратора в ходе одноразового режима.

Это, в свою очередь, переворачивает реакцию линейного изменения выходного сигнала и заставляет его подниматься вверх, это продолжается, пока включен однократный режим, и как только его период истекает, линейное изменение снова вынуждено изменить свое направление и заставляет вернуться к нисходящий падающий узор.

Расчет частоты

Вышеупомянутый процесс колебательного отклика обеспечивает устойчивый баланс заряда (средний ток) между током входного сигнала и опорным током, который решается с помощью следующего уравнения:

I (дюйм) = IR (средн. )
В (вход) / R1 = fo tos
(1 мА)
Где fo - частота на выходе, t - период однократного импульса = 7500 C1 (Frarads)

Значения R1 и C1 выбраны соответствующим образом, чтобы в результате рабочий цикл составляет 25% в полном диапазоне выходной частоты.Для FSD, который может быть выше 200 кГц, рекомендуемые значения будут генерировать около 50% рабочего цикла.

Рекомендации по применению:

Наилучшей областью применения для описанной выше схемы преобразователя частоты в напряжение является то, где требуется преобразование частотных данных в данные напряжения.

Например, эту схему можно использовать в тахометрах, а также для измерения скоростей двигателей в диапазонах напряжения.

Таким образом, эту схему можно использовать для изготовления простых спидометров для двухколесных транспортных средств, включая велосипеды и т. Д.

Обсуждаемую ИС можно также использовать для создания простых, недорогих, но точных частотомеров в домашних условиях, используя вольтметры для считывания выходного преобразования.

3) Использование микросхемы LM2917

Это еще одна отличная серия микросхем, которую можно использовать для множества различных схем. По сути, это микросхема преобразователя частоты в напряжение (тахометр) со множеством интересных функций. Узнаем больше.

Основные электрические характеристики

Основные характеристики микросхем LM2907 и LM2917 подчеркнуты следующим образом:

  • Входной вывод тахометра, связанный с землей, можно напрямую сделать совместимым со всеми видами магнитных датчиков с различным сопротивлением.
  • Выходной вывод связан с внутренним транзистором общего коллектора, который может потреблять до 50 мА. Это может управлять даже реле или соленоидом напрямую без внешних буферных транзисторов, светодиоды и лампы также могут быть интегрированы с выходом, в том числе и, конечно, могут быть подключены к входам CMOS.
  • Чип может удваивать низкие частоты пульсации.
  • Входы тахометра имеют встроенный гистерезис.
  • Вход тахометра с заземлением полностью защищен от колебаний входной частоты, превышающих напряжение питания ИС или отрицательного потенциала ниже нуля.

Детали распиновки различных доступных корпусов микросхем LM2907 и LM2917 можно увидеть на приведенных ниже изображениях:

Основные области применения этой микросхемы:

  • Измерение скорости: его можно использовать для определения скорость вращения или скорость движущегося элемента
  • Преобразователи частоты: для преобразования частоты в линейно изменяющуюся разность потенциалов
  • Датчики касания на основе вибрации

Автомобильная промышленность

Чип становится особенно полезным в автомобильной области, как указано ниже :

  • Спидометры: В транспортных средствах для измерения скорости
  • Измерители выдержки в точке прерывания: Также приложение для измерения параметров двигателя транспортного средства.
  • Handy Tachometer: чип можно использовать для изготовления портативных тахометров.
  • Контроллеры скорости: Устройство может применяться в устройствах контроля скорости или управления скоростью.
  • Другие интересные применения LM2907 / LM2917 IC включают: круиз-контроль, управление замками автомобильных дверей, управление сцеплением, управление звуковым сигналом.

Абсолютные максимальные номинальные значения

(то есть номиналы, которые нельзя превышать, для ИС)

  1. Напряжение питания = 28 В
  2. Ток питания = 25 мА
  3. Напряжение коллектора внутреннего транзистора = 28 В
  4. Дифференциальный тахометр входное напряжение = 28 В
  5. Диапазон входного напряжения = +/- 28 В
  6. Рассеиваемая мощность = от 1200 до 1500 мВт

Другие электрические параметры

Прирост напряжения = 200 В / мВ

Выходной ток стока = от 40 до 50 мА

Отличительные особенности и преимущества этой микросхемы

  1. Выход не реагирует на нулевые частоты и выдает нулевое напряжение на выходе.
  2. Выходное напряжение можно просто рассчитать по формуле: VOUT = fIN × VCC × Rx × Cx
  3. Простая RC-цепь определяет функцию удвоения частоты IC.
  4. Встроенный стабилитрон обеспечивает регулируемое и стабилизированное преобразование частоты в напряжение или ток (только в LM2917)

Типичная схема подключения микросхемы LM2907 / LM2917 показана ниже:

Для получения дополнительной информации, Вы можете обратиться к этой статье

О Swagatam

Я инженер-электронщик (dipIETE), любитель, изобретатель, разработчик схем / печатных плат, производитель.Я также являюсь основателем веб-сайта: https://www.homemade-circuits.com/, где я люблю делиться своими инновационными идеями и руководствами по схемам.
Если у вас есть какие-либо вопросы, связанные со схемой, вы можете взаимодействовать с ними через комментарии, я буду очень рад помочь!

.

2 Объяснение простых схем преобразователя напряжения в частоту

Схема преобразователя напряжения в частоту преобразует пропорционально изменяющееся входное напряжение в пропорционально изменяющуюся выходную частоту.

В первой конструкции используется микросхема IC VFC32, которая представляет собой усовершенствованное устройство преобразования напряжения в частоту от BURR-BROWN, специально разработанное для получения чрезвычайно пропорциональной частотной характеристики подаваемому входному напряжению для заданного применения схемы преобразователя напряжения в частоту.

Как работает устройство

Если входное напряжение изменяется, выходная частота следует этому и изменяется пропорционально с большой степенью точности.

Выход микросхемы представляет собой транзистор с открытым коллектором, которому просто требуется внешний подтягивающий резистор, подключенный к источнику 5 В, чтобы выход был совместим со всеми стандартными устройствами CMOS, TTL и MCU.

Можно ожидать, что выходной сигнал этой ИС будет устойчивым к шумам и с превосходной линейностью.

Полный диапазон преобразования выходного сигнала определяется включением внешнего резистора и конденсатора, размеры которых могут быть выбраны для получения достаточно широкого диапазона отклика.

Основные характеристики VFC32

Устройство VFC32 также имеет функцию работы в обратном порядке, то есть его можно настроить для работы как преобразователь частоты в напряжение с аналогичной точностью и эффективностью. Об этом мы подробно поговорим в следующей статье.

ИС может поставляться в различных упаковках в зависимости от требований вашего приложения.

На первом рисунке ниже изображена стандартная конфигурация схемы преобразователя напряжения в частоту, где R1 используется для настройки диапазона обнаружения входного напряжения.

Включение обнаружения полной шкалы

Резистор 40 кОм может быть выбран для получения обнаружения входа полной шкалы от 0 до 10 В, другие диапазоны могут быть достигнуты простым решением следующей формулы:

R1 = Vfs / 0.25 мА

Предпочтительно R1 должен быть типа MFR для обеспечения повышенной стабильности. Регулируя значение R1, можно уменьшить доступный диапазон входного напряжения.

Для достижения регулируемого выходного диапазона FSD вводится C1, значение которого может быть соответствующим образом выбрано для назначения любого желаемого диапазона преобразования выходной частоты, здесь, на рисунке, он выбран, чтобы дать шкалу от 0 до 10 кГц для входного диапазона от 0 до 10 В. .

Однако следует отметить, что качество C1 может напрямую влиять на линейность или точность вывода, поэтому рекомендуется использовать конденсатор высокого качества.Тантал, возможно, станет хорошим кандидатом для этого типа области применения.

Для более высоких диапазонов порядка 200 кГц и выше можно выбрать конденсатор большей емкости для C1, в то время как R1 можно установить на 20 кОм.

Соответствующий конденсатор C2 не обязательно влияет на работу C1, однако значение C2 не должно выходить за заданный предел. Значение для C2, как показано на рисунке ниже, не следует уменьшать, хотя увеличение его значения выше этого может быть нормальным.

Частотный выход

Распиновка частот IC внутренне сконфигурирована как транзистор с открытым коллектором, который означает, что выходной каскад, подключенный к этому выводу, будет испытывать только отклик понижающегося напряжения / тока (низкий логический уровень) для предлагаемого преобразования напряжения в частоту.

Чтобы получить переменную логическую реакцию вместо только ответа «понижающийся ток» (низкий логический уровень) от этой распиновки, нам необходимо подключить внешний подтягивающий резистор с питанием 5 В, как показано на второй диаграмме выше.

Это обеспечивает попеременно изменяющуюся логическую реакцию высокого / низкого уровня в этой распиновке для подключенного каскада внешней схемы.

Возможные применения

Описанная схема преобразователя напряжения в частоту может использоваться для многих приложений, специфичных для пользователя, и может быть адаптирована для любых соответствующих требований.Одним из таких приложений может быть создание цифрового измерителя мощности для записи потребления электроэнергии для данной нагрузки.

Идея состоит в том, чтобы подключить резистор измерения тока последовательно с рассматриваемой нагрузкой, а затем интегрировать развивающийся ток на этом резисторе с описанной выше схемой преобразователя напряжения в частоту.

Поскольку ток, нарастающий через чувствительный резистор, будет пропорционален потребляемой нагрузке, эти данные будут точно и пропорционально преобразованы в частоту с помощью описанной схемы.

Преобразование частоты может быть дополнительно интегрировано со схемой частотомера IC 4033 для получения цифровых калиброванных показаний потребления нагрузки, и это может быть сохранено для будущей оценки.

Предоставлено: http://www.ti.com/lit/ds/symlink/vfc32.pdf

2) Использование IC 4151

Следующая высокопроизводительная схема преобразователя частоты в напряжение построена на основе нескольких компонентов и ИС на основе коммутационной схемы. При значениях деталей, указанных на схеме, коэффициент преобразования достигается с линейной характеристикой прибл.1%. При подаче входного напряжения от 0 до 10 В оно преобразуется в пропорциональную величину выходного напряжения прямоугольной формы от 0 до 10 кГц.

С помощью потенциометра P1 можно настроить схему так, чтобы входное напряжение 0 В генерировало выходную частоту 0 Гц. Компонентами, отвечающими за фиксацию частотного диапазона, являются резисторы R2, R3, R5, P1 вместе с конденсатором C2.

Применяя формулы, показанные ниже, можно преобразовать отношение напряжения к частоте преобразования, чтобы схема работала очень хорошо для нескольких уникальных приложений.

При определении произведения T = 1.1.R3.C2 вы должны убедиться, что оно всегда меньше половины минимального периода вывода, то есть положительный выходной импульс всегда должен быть минимальным до тех пор, пока отрицательный импульс.

f0 / Uin = [0,486. (R5 + P1) / R2. R3. C2]. [кГц / В]

T = 1,1. R3. C2

О Swagatam

Я инженер-электронщик (dipIETE), любитель, изобретатель, разработчик схем / печатных плат, производитель. Я также являюсь основателем сайта: https: // www.homemade-circuits.com/, где я люблю делиться своими новаторскими идеями и руководствами по схемам.
Если у вас есть какие-либо вопросы, связанные со схемой, вы можете общаться с ними через комментарии, я буду очень рад помочь!

.

2 Простые проекты преобразователя света в частоту для преобразования света в импульсы

В этой статье мы увидим, что такое схема преобразователя света в частоту, как она работает, как ее использовать в проекте и ее характеристики.

Независимо от того, к какой категории вы относитесь, профессионалу, любителю, инженеру или студенту, модульные компоненты всегда уменьшают половину нашей головной боли при проектировании схем.

Они устраняют необходимость в разработке специальных схем и снижают затраты.Одним из таких модульных компонентов является преобразователь света в частоту TSL235R.

Что такое преобразователь света в частоту (TSL235R)?

Этот модульный компонент представляет собой интегральную схему, которая преобразует силу света в частоту с коэффициентом заполнения 50%.

Интенсивность и частота света пропорциональны.

Когда усиливается окружающее или какое-либо внешнее освещение, выходная частота увеличивается, и наоборот.

TSL235R - устройство на трех ножках, внешне очень похоже на транзистор с полупрозрачным корпусом.

Поставляется в двух вариантах: для поверхностного монтажа и для обычного монтажа на печатной плате.

Основным преимуществом этой ИС является то, что для генерации частоты не требуется никаких внешних компонентов; он может напрямую подключаться к любому микроконтроллеру или микропроцессору.

Имеет крошечную выпуклую линзу перед модулем для фокусировки света, а задняя сторона плоская. Он очень чувствителен, так как обнаруживает крошечные изменения света.

Обзор спецификаций:

TSL235R может получать питание от 2.От 7 В до 5,5 В (номинальное напряжение 5 В).

Он имеет широкий диапазон светового отклика от 320 до 1050 нм, который охватывает от ультрафиолетового до видимого света. Он имеет рабочую температуру от -25 градусов по Цельсию до +70 градусов по Цельсию.

Имеет температурный коэффициент 150 ppm на градус Цельсия. Максимальная частота, которую он может передавать, составляет 100 кГц, а минимальная частота находится в диапазоне нескольких 100 Гц.

Выходной рабочий цикл строго откалиброван на 50%. Его длина составляет 19,4 мм, включая клеммы и 4 шт.Ширина 6 мм.

Конденсатор в диапазоне от 0,01 мфд до 0,1 мфд должен быть подключен к его клемме источника питания, а конденсатор и TLS235R должны быть замкнуты насколько возможно.

Как это работает?

Он объединяет два компонента: кремниевый фотодиод и преобразователь тока в частоту (CFC). CFC - это схема, которая преобразует текущий параметр в частотный.

Ток, протекающий через фотодиод, пропорционален силе света.

Преобразователь тока в частоту (CFC) измеряет величину тока, протекающего через фотодиод.

Когда ток через фотодиод увеличивается; CFC повышает его частоту, и наоборот. Таким образом, мы получаем косвенное преобразование света в частоту.

Как и где им пользоваться?

Вы можете использовать TSL235R там, где вы работаете с любым проектом, основанным на освещении, например:

· Вы можете использовать его для измерения интенсивности окружающего освещения, например, люксметр.

· Вы можете соединить светодиод и TSL235R для цепи обратной связи в инверторе, где выходной сигнал необходимо стабилизировать независимо от подключенной нагрузки.

· Может использоваться в детекторе движения, где можно обнаружить любое изменение интенсивности света.

· Может использоваться в системе безопасности.

· Может использоваться в автоматической системе уличного освещения, где падение частоты может быть обнаружено микроконтроллером и инициировано выходом.

Вот иллюстрация, как взаимодействовать с микроконтроллером

Приложения неограниченны, когда начинаете играть с ним и правильно понимаете.

Преобразователь света в частоту с использованием IC 555

Аналогичная схема может быть получена при использовании IC 555, подключенного в нестабильном режиме, с заменой одного из резисторов на LDR, как показано ниже:

Конденсатор C1 могут быть заменены другими значениями для получения других наборов частотных диапазонов в соответствии со спецификациями приложения.

Вывод 3 микросхемы IC 555 может быть интегрирован в любую желаемую внешнюю нагрузку или схему. В случае, если требуется TTL-совместимый выход, убедитесь, что на IC 555 подается точное напряжение 5 В.

О Swagatam

Я инженер-электронщик (dipIETE), любитель, изобретатель, разработчик схем / печатных плат, производитель. Я также являюсь основателем веб-сайта: https://www.homemade-circuits.com/, где я люблю делиться своими инновационными идеями и руководствами по схемам.
Если у вас есть какой-либо вопрос, связанный со схемой, вы можете взаимодействовать с ним через комментарии, я буду очень рад помочь!

.

Частотный преобразователь длины волны


Полный список единиц измерения частоты и длины волны для преобразования

  • герц [Гц]
  • 1 эксагерц [EHz] = 1.0E + 18 герц [Гц]
  • 1 петагерц [PHz] = 1.0E + 15 герц [Гц]
  • 1 терагерц [ТГц] = 1000000000000 герц [Гц]
  • 1 гигагерц [ГГц] = 1000000000 герц [Гц]
  • 1 мегагерц [МГц] = 1000000 герц [Гц]
  • 1 килогерц [кГц] = 1000 герц [Гц] = 1000 Гц ]
  • 1 гектогерц [Гц] = 100 герц [Гц]
  • 1 декагерц [да Гц] = 10 герц [Гц]
  • 1 децигерц [дГц] = 0.1 герц [Гц]
  • 1 сантигерц [кГц] = 0,01 герц [Гц]
  • 1 миллигерц [мГц] = 0,001 герц [Гц]
  • 1 микрогерц [мкГц] = 1,0E-6 герц [Гц]
  • 1 наногерц [нГц] = 1,0E-9 герц [Гц]
  • 1 пикогерц [пГц] = 1,0E-12 герц [Гц]
  • 1 фемтогерц [fHz] = 1,0E-15 герц [Гц]
  • 1 аттогерц [ aHz] = 1,0E-18 герц [Гц]
  • 1 цикл / секунда = 1 герц [Гц]
  • 1 длина волны в эксаметрах = 2,99792458E-10 герц [Гц]
  • 1 длина волны в петаметрах = 2.99792458E-7 герц [Гц]
  • 1 длина волны в тераметрах = 0,0002997925 герц [Гц]
  • 1 длина волны в гигаметрах = 0,299792458 герц [Гц]
  • 1 длина волны в мегаметрах = 299,792458 герц =
  • км / с 299792,458 герц [Гц]
  • 1 длина волны в гектометрах = 2997924,58 герц [Гц]
  • 1 длина волны в декаметрах = 29979245,8 герц [Гц]
  • 1 длина волны в метрах [м] = 299792458 длина волны 10007 Гц [Гц]
  • Гц = 2997924580 герц [Гц]
  • 1 длина волны в сантиметрах = 29979245800 герц [Гц]
  • 1 длина волны в миллиметрах = 299792458000 герц [Гц]
  • 1 длина волны в микрометрах = 2.99792458E + 14 герц [Гц]
  • 1 длина волны комптона электрона = 1,235589789993E + 20 герц [Гц]
  • длина волны 1 комптона протона = 2,2687315327002E + 23 герц [Гц]
  • 1 длина волны комптона нейтрона = 2,244727858E Гц]
.

Смотрите также