Вход на сайт

Зарегистрировавшись на сайте Вы сможете добавлять свои материалы






Аэс самодельная


Ядерный реактор – дома с нуля / Хабр

Некоторое время назад я публиковал статью о самодельных микропроцессорах, сегодня же мы затронем более сложную и щекотливую тему (особенно в свете событий на Фокусиме) – создание ядерного реактора, способного генерировать энергию в домашних условиях. И перед тем как вы начнете волноваться, вспоминая о негативных опытах в прошлом (см. Радиоактивный бойскаут – наковырявший прилично амерция-241 из детекторов дыма) заранее скажу, что все что описано в этой статье – относительно безопасно (по крайней мере не опаснее работы с фтороводородной кислотой дома), но крайне не рекомендуется к повторению. Перед любыми действиями проконсультируйтесь со своим адвокатом — законы разные в разных странах. Много кто уже сидит.
Какие у нас есть пути создания домашнего ядерного реактора?

Термоядерная реакция

Тяжелый водород (дейтрий) относительно несложно получить и в домашних условиях — всего то нужен многостадийный электролиз обычной воды. Но вот с реактором до сих проблемы даже у ученых, и не первый десяток лет (и это не учитывая, что дейтрий — далеко не самое легкое в использовании термоядерное топливо)
Ядерная реакция деления

В простейшем случае — нужен просто природный уран без обогащения и немного воды (хехе, «Просто добавь воды»: вода — и замедлитель, и отражатель нейтронов). Проблема в том, что надо этого добра сотни тонн, и за вами точно придет доктор, даже если вы 0.1 грамма попробуете найти / купить / унести.

Тут в унынии нам остается обратить взоры в небо, и посмотреть на чем летают межпланетные корабли — там просто кусок радиоактивного материала, который за счет естественного распада нагревается, и элементами пельтье получают энергию. (Кстати естественный распад — собственно главная физическая причина всех бед на Фокусиме — после остановки ядерного реактора в первые минуты за счет распада выделяется 7% номинальной мощности, в первые недели — ~1%, затем падает до 0.1%. Т.е. от 700МВт реактора в первые недели надо отводить 7МВт тепла, и этот процесс не остановить)

Попробуем подумать в этом направлении: Есть 3 основных вида радиоактивного распада:

Гамма-распад

Источники гамма излучения широко используются в медицине и промышленности, в основном на основе Кобальта-60/Цезия-137 (печально известного по ядерным катастрофам). Проблема в том, что излучение их очень жесткое, крайне опасное, и от него и сантиметром свинца не защититься (см. веселое свечение Вавилова-Черенкова справа — выбитые гамма-квантами электроны, движущиеся в воде со сверхсветовой скоростью излучают энергию в видимом диапазоне). Так что обходим их стороной как можно дальше. Ну и кроме того, за нелегальную сбыт/покупку гамма-источников каждый год садится куча людей
PS. Справедливости ради стоит заметить, что гамма-квант в данных случаях выделяется не непосредственно, а в результате распада одного из дочерних короткоживущих элементов.
Альфа-распад

Источники альфа-излучения активно применяются в детекторах дыма, для облегчения зажигания искры, в некоторых радиолампах. Один из наиболее известных — упомянутый в начале Америций-241. От альфа-излучения легко защититься даже листком бумаги, но с ними другая опасность: они чрезвычайно опасны если их вдохнуть/проглотить. См. миф об отравлении Кровавой Гэбней Литвиненко. Кроме того, наковырять количества больше микрограммов нереально, потому о термоэлектрических генераторах придется забыть. А жаль — ведь на основе альфа-распада работают наиболее эффективные генераторы энергии. Самый лучший — Плутоний-238 (Не путать с 239) — отдает 0.5 Ватта тепла на 1 грамм массы, полураспад 87 лет (цена — 1 мегабакс за кило).
Бета-распад

Источники мягкого бета-излучения (в сущности, электроны/позитроны) умеренно хорошо экранируются, и обладают чертовски полезным качеством: при попадании электрона в люминофор можно вызвать его свечение. Ну и как побочный эффект — в большинстве стран мира «безопасные» бета-излучатели достаточно легальны. Чем и пользуются изготовители всяких светящихся брелков, как на первой фотографии. Пожалуй, на основе бэта-распада мы и будем строить свой ядерный реактор.

Основа нашего реактора — капсула с тритием, с небезызвестного сайта DealExtreme — www.dealextreme.com/p/mini-tritium-glowring-keychain-10-year-green-glow-6830. 9.7$. Формально радиоактивные материалы так просто почтой слать нельзя, но DealExtreme про это видимо не знает.

О безопасности

Мягкое бета-излучение за пределы капсулы выйти не может, гелий не радиоактивен. Проблема может быть лишь в случае повреждения капсулы. Если тритий вдохнуть — то заражение будет минимальным, т.к. водород напрямую организмом не усваивается. Но если он сгорит, то вода может стать частью клеток, и тогда вы получите всё облучение, которое может только выжать этот микроскопический кусочек трития. Так что, не ломайте, не сжигайте и не вдыхайте то что получилось.

Итак, Тритий — сверхтяжелый водород, период полураспада 12.32 года. На выходе имеем гелий и очень «мягкие» электроны — 6.5кЭв (+антинейтрино, для ценителей). Энергию будем собирать солнечной батареей, подавать на вход Step-Up стабилизатора MCP1640 — работает до десятых вольта на входе, на выходе — ионистор на 1 Фарад и 5В. В нашем случае нагрузкой будет красный светодиод.


Для того, чтобы собрать как можно больше света, нашу капсулу с тритием помещаем в отражатель из фольги.

Для фокусировки используем 2 линзы по 10 диоптрий, видна солнечная батарея до приклеивания, капсула не установлена.

Подключаем, выключаем свет, ждем минуту для первоначального заряда ионистора, и вот результат:

Первая электроэнергия, произведенная ядерным реактором, созданным в домашних условиях :-)
Халява?

О нет :-) В среднем реактор выдает мощность около 7 милливатт (а через 12.32 года будет 3.5 ), и хоть для светодиода этого достаточно, ноутбук от него не зарядить ) Но с другой стороны, десяток таких модулей вполне сможет держать сотовый телефон в режиме ожидания пару десятков лет :-) Правда цена… Капсула стоит 9.7$, солнечная батарея 5$, линзы 13.8$*2 — уже 42$ за модуль. А за десяток придется отдать 420$… С другой стороны — на сайте есть капсулы побольше — но за 35.

Комментарии/вопросы/мнения — в студию.

UPDATE: Товарищи, поднимаем перевод на английский на Reddit
http://www.reddit.com/r/technology/comments/ggg43/guys_ive_just_built_tiny_nuclear_reactor_at_home/

Все, что вам нужно знать об атомных электростанциях

Число атомных электростанций за последние годы увеличилось. По состоянию на 2019 год в мире насчитывается более 400 атомных электростанций. В настоящее время более 14% мировой электроэнергии вырабатывается атомными электростанциями.

В 2018 году только атомные электростанции в США произвели 807,1 миллиарда киловатт энергии, что составляет 20% электроэнергии страны.

СВЯЗАННЫЙ: ПОЗНАКОМЬТЕСЬ С ПЕРВОЙ В МИРЕ АТОМНОЙ ЭЛЕКТРОСТАНЦИИ

Как атомные электростанции вырабатывают энергию?

Ответ прост: ядерная реакция.Однако если вы копнете немного глубже, вы откроете для себя набор сложных процессов, которые позволяют нам получать энергию из ядерных частиц.

И в этом руководстве мы будем внимательны!

Ядерные реакции бывают двух типов - ядерное деление и ядерный синтез. Мы используем ядерное деление для выработки энергии из ядерных реакторов. Причина, по которой мы не используем ядерный синтез, заключается в том, что у нас нет технологии, достаточно зрелой для безопасного и экономичного выполнения этого процесса.

Тем не менее, уже ведутся исследования по созданию устойчивого синтеза энергии.

Энергия, выделяемая в ядерных реакциях, находится в виде тепла.

На атомных электростанциях это тепло, выделяемое в результате реакций, используется для превращения воды в перегретый пар. Затем этот пар используется для вращения турбины, соединенной с генератором.

Когда турбина раскручивается, генератор начинает вырабатывать энергию.

Что такое деление ядра и как оно работает?

Деление ядра - это процесс расщепления атома.Когда атом расщепляется, он высвобождает огромное количество энергии.

Атомные электростанции, которые мы используем сегодня, используют эту энергию и преобразуют ее в электрическую энергию.

У атома есть ядро ​​и электроны, вращающиеся вокруг него. Ядро атома состоит из нейтронов и протонов. Ядро удерживается силой, называемой сильной ядерной силой.

Это самая сильная сила в природе.

Один из способов преодолеть эту силу и разделить атом - это ударить по ядру нейтроном.

При делении ядер мы используем атомы урана из-за их большого атомного размера. Большой размер означает, что атомная сила внутри него не такая уж сильная.

Следовательно, существует большая вероятность расщепления ядра.

Еще одно преимущество урана состоит в том, что, хотя он редко встречается в природе, радиоактивность урана обеспечивает постоянный поток энергии. Один фунт урана производит столько же энергии, сколько и три миллиона фунтов угля.

При делении ядра нейтроны высоких энергий заставляют бомбардировать ядра урана.Бомбардировка заставляет ядра ядер урана расщепляться.

Этот процесс высвобождает большое количество энергии, и нейтроны внутри ядер урана также высвобождаются. Затем эти нейтроны бомбардируют другие атомы урана.

Этот процесс превращается в цепную реакцию, где каждая бомбардировка приводит к новым бомбардировкам. Чтобы эта цепная реакция не вышла из-под контроля, в ядерных реакторах используются регулирующие стержни, которые поглощают нейтроны.

Ядерное деление создает температуру до 520 ° F (270 ° C) в центре ядерного реактора.

Все атомные станции не одинаковы. Они похожи по типу ядерного топлива, которое они используют, но отличаются способом нагрева воды и превращения ее в пар.

Исходя из этой классификации, атомные электростанции можно в общих чертах разделить на две:

  1. Реактор с кипящей водой (BWR)
  2. Реакция с водой под давлением (PWR)

Реактор с водой под давлением (PWR): A водяной реактор - самый распространенный тип атомных электростанций.В реакторе с водой под давлением или PWR есть два резервуара для воды.

Первый контейнер находится внутри реактора и находится под давлением с помощью компенсатора давления. Подача воды под давлением повышает температуру кипения воды.

В PWR давление установлено на 150 МПа , что приводит к температуре кипения около 644 ° F (340 ° C) . Вода поступает в реактор при 554 ° F (290 ° C) и выходит из него при 608 ° F (320 ° C) .

Горячая вода, выходящая из реактора, проходит по трубам, помещенным во второй контейнер.Вода во втором контейнере вообще не находится под давлением, поэтому она начинает закипать, как только горячая вода проходит по трубкам, генерируя пар для вращения турбины.

Реактор с кипящей водой (BWR): В реакторе с кипящей водой не используется двухкамерный подход PWR. Вместо этого вода, протекающая через реактор, - это та же вода, которая вращает турбину.

Когда вода попадает в реактор, она превращается в пар, поскольку температура внутри реактора составляет 545 ° F (285 ° C) .Фактический КПД реактора с кипящей водой (BWR) составляет около 33-34% .

Переход от электростанций, работающих на ископаемом топливе, к атомным электростанциям дает множество преимуществ. Мы перечислили несколько ниже:

  • Достижения в области сканирования и добычи позволили получить относительно недорогие поставки урана
  • Уран имеет очень высокую плотность энергии, во много раз превышающую массу ископаемого топлива
  • Атомные электростанции способны производить производство постоянной энергии
  • Отсутствие выбросов парниковых газов
  • Производство большой энергии на относительно небольшой площади по сравнению с альтернативами солнечной или ветровой энергии.

Когда мы смотрим на недостатки атомных электростанций, их всего два. Во-первых, первоначальная стоимость атомной электростанции очень высока и исчисляется миллиардами. Во-вторых, радиоактивные отходы, являющиеся побочным продуктом ядерной реакции.

Ядерная энергия - один из самых надежных видов энергии, которые используются сегодня. С годами мы наблюдаем постепенный рост количества атомных станций в мире.

СВЯЗАННЫЕ С: ПРЕВРАЩЕНИЕ ЯДЕРНОГО ОРУЖИЯ В ЯДЕРНОЕ ТОПЛИВО

Благодаря новым достижениям в исследованиях ядерной энергетики, таким как замена тория вместо урана, мы можем обеспечить стабильные поставки ядерного топлива на ближайшие века.Мы также активно исследуем способы утилизации ядерных отходов, образующихся на атомных электростанциях.

По сути, мы можем без сомнения сказать, что атомная энергия никуда не денется!

.

мини-атомных электростанций могут обеспечить электроэнергией 20 000 домов (обновление)

Миниатюрные ядерные модули Hyperion & acutes можно было легко транспортировать и закопать под землей, с возможностью питания до 20 000 домов.

(PhysOrg.com) - Подземные атомные электростанции размером не больше гидромассажной ванны вскоре могут обеспечивать электричеством сообщества по всему миру. Каждый мини-реактор размером около 1,5 метра может обеспечить энергией около 20 000 домов.( Пожалуйста, смотрите ниже обновление )

Малые энергетические модули были первоначально разработаны Отисом «Питом» Петерсоном и другими учеными из Национальной лаборатории Лос-Аламоса в Нью-Мексико. Сейчас технология коммерчески разрабатывается компанией Hyperion Power Generation, которая недавно объявила, что получила первые заказы и планирует начать массовое производство в течение пяти лет.

«Наша цель - производить электричество по цене 10 центов за ватт в любой точке мира», - сказал Джон Дил, генеральный директор Hyperion. «[Атомные станции] будут стоить приблизительно 25 миллионов долларов каждая. Для сообщества с 10 000 семей это очень доступные 2,500 долларов на дом».

Из-за своего небольшого размера мини-электростанции можно относительно быстро собрать и доставить грузовиком, по железной дороге или кораблем в отдаленные места, даже в места, где в настоящее время нет электричества. Электростанции представляют собой альтернативу нынешним атомным электростанциям, которые являются большими, дорогими, на строительство которых уходит около 10 лет.Кроме того, крупномасштабные электростанции не подходят для нужд небольшого населения или территорий без доступной земли. Модули Hyperion могут быть соединены вместе, чтобы обеспечить энергией и большие группы населения.

Кроме того, модули Hyperion не имеют движущихся частей, которые могут изнашиваться, и их никогда не нужно открывать на месте. Даже если его открыть, небольшое количество закрытого топлива немедленно охладится, что снизит опасения по поводу безопасности. «Модуль не может стать сверхкритическим,« расплавиться »или создать какие-либо аварийные ситуации», - заявляет компания на своем веб-сайте.Поскольку заводы Hyperion будут похоронены под землей и будут охраняться службой безопасности, компания объясняет, что они будут вне поля зрения и защищены от незаконного использования. Кроме того, материал внутри не подходит для целей распространения.

«Вам потребуются ресурсы национального государства для обогащения нашего урана», - сказал Дил. «С точки зрения температуры здесь слишком жарко. Это все равно что украсть барбекю голыми руками».

Реакторы необходимо перезагружать каждые семь-десять лет.По словам Гипериона, после пяти лет выработки электроэнергии модуль производит отходы размером примерно с мяч для софтбола, которые могут быть использованы для переработки топлива.

Hyperion теперь имеет более 100 заказов на свои модули, в основном из нефтяной и электроэнергетической промышленности. Первый заказ поступил от чешской инфраструктурной компании TES, которая специализируется на гидро и электростанциях.TES заказала шесть модулей и опционально еще 12, причем первый из них планируется разместить в Румынии.

Hyperion планирует построить три завода-изготовителя с целью производства 4000 мини-ядерных модулей в период с 2013 по 2023 год. В следующем году компания подает заявку на строительство модулей в Комиссию по ядерному регулированию.

Признавая, что коммерческое развитие мини-атомных электростанций является благородной целью, Hyperion считает, что потенциальные преимущества технологии оправдывают усилия.Помимо подачи электричества в удаленные районы, модули Hyperion могут также использоваться для обеспечения чистой водой 25% населения мира, которое в настоящее время не имеет доступа к чистой воде. Модули могут обеспечивать питание для перекачивания, очистки и обработки воды, что, в свою очередь, может помочь уменьшить болезни, бедность и социальные волнения.

Обновление (12 ноября 2008 г.): Комиссия по ядерному регулированию (NRC) связалась с PhysOrg.com , чтобы заявить, что NRC не планирует пересматривать проект Hyperion в ближайшем будущем, хотя NRC и Hyperion предварительно разговоры.Поскольку конструкция Hyperion уникальна, NRC ожидает, что для обеспечения требований безопасности потребуется значительное время. В ответе на письмо от октября 2008 года NRC сообщила:

«Hyperion Power Generation находится на ранних стадиях разработки этой конструкции, и для этой концепции доступно очень мало информации о тестировании. Hyperion Power Generation заявила, что представит технические отчеты для поддержки предварительного рассмотрения заявки в конце 2009 финансового года. NRC не может вступать в какое-либо значимое формальное техническое взаимодействие с потенциальным кандидатом до тех пор, пока мы не получим эти отчеты.Из-за очень ограниченного количества данных испытаний и отсутствия опыта эксплуатации реактора на основе гидрида урана сотрудники NRC ожидают, что проверка лицензирования повлечет за собой серьезные технические вопросы, вопросы безопасности и политики лицензирования ».

Дополнительная информация: www.hyperionpowergeneration.com

через: The Guardian


Открытый исходный код для глобального энергосбережения

Ссылка : Мини-атомные электростанции могут питать 20 000 домов (обновление) (12 ноября 2008 г.) получено 8 сентября 2020 с https: // физ.org / news / 2008-11-mini-Nuclear-power-homes.html

Этот документ защищен авторским правом. За исключением честных сделок с целью частного изучения или исследования, нет часть может быть воспроизведена без письменного разрешения. Контент предоставляется только в информационных целях.

.

Атомная электростанция - образование в области энергетики

Атомные электростанции - это тип электростанции, на которой для выработки электроэнергии используется процесс ядерного деления. Они делают это, используя ядерные реакторы в сочетании с циклом Ренкина, где тепло, вырабатываемое реактором, превращает воду в пар, который вращает турбину и генератор. Ядерная энергия обеспечивает мир около 11% всей электроэнергии, крупнейшими производителями которой являются США и Франция. [1]

Рисунок 1. Атомная электростанция Дарлингтон в Онтарио вырабатывает энергию из четырех реакторов CANDU мощностью 878 МВт. [2]

Помимо источника тепла, атомные электростанции очень похожи на угольные электростанции. Однако они требуют других мер безопасности, поскольку ядерное топливо по своим свойствам сильно отличается от угля или других ископаемых видов топлива. Они получают свою тепловую энергию от расщепления ядер атомов в активной зоне своего реактора, при этом уран является сегодня основным топливом в мире.Торий также потенциально может использоваться в ядерной энергетике, однако в настоящее время он не используется. Ниже представлена ​​основная работа электростанции с кипящей водой, на которой показаны многие компоненты электростанции, а также выработка электроэнергии.

Рисунок 2. Ядерный реактор с кипящей водой в сочетании с циклом Ренкина составляет основу атомной электростанции. [3]

Компоненты и работа

Ядерный реактор

основная статья

Реактор является ключевым компонентом электростанции, поскольку он содержит топливо и его цепную ядерную реакцию, а также все ядерные отходы.Реактор является источником тепла для электростанции, так же как котел для угольной станции. Уран является основным ядерным топливом, используемым в ядерных реакторах, и его реакции деления - это то, что выделяет тепло внутри реактора. Затем это тепло передается теплоносителю реактора, который обеспечивает теплом другие части атомной электростанции.

Помимо использования в производстве электроэнергии, существуют другие типы ядерных реакторов, которые используются для производства плутония, приведения в движение кораблей, самолетов и спутников, а также в исследовательских и медицинских целях. [4] Электростанция включает не только реактор, но и градирни, турбины, генераторы и различные системы безопасности. Реактор - это то, что отличает его от других внешних тепловых двигателей.

Производство пара

Производство пара является обычным для всех атомных электростанций, но способы его выполнения сильно различаются.

Рисунок 3. Паровая турбина на электростанции. [5]

На большинстве электростанций в мире используются реакторы с водой под давлением, в которых для производства пара используются два контура циркуляции воды. [6] Первый контур переносит очень горячую жидкую воду в теплообменник, где циркулирует вода с более низким давлением. Затем он нагревается и превращается в пар, после чего его можно отправить в турбинную часть.

Реакторы с кипящей водой, второй по распространенности реактор в производстве электроэнергии, нагревают воду в активной зоне непосредственно до пара, как показано на рисунке 2. [6]

Турбина и генератор

Рисунок 4. Две градирни атомной электростанции. [7]

После того, как пар был произведен, он проходит под высоким давлением и скоростью через одну или несколько турбин.Они развиваются до чрезвычайно высоких скоростей, в результате чего пар теряет энергию и, следовательно, конденсируется обратно в более холодную жидкую воду. Вращение турбин используется для вращения электрогенератора, вырабатывающего электричество, которое отправляется в электрическую сеть. [8]

Градирни

Пожалуй, наиболее знаковым символом атомной электростанции являются градирни, показанные на рисунке 4. Они работают, чтобы отводить отработанное тепло в атмосферу за счет передачи тепла от горячей воды (от секции турбины) к более холодному наружному воздуху. [4] Горячая вода охлаждается при контакте с воздухом, и небольшая часть, около 2%, испаряется и поднимается вверх. Более того, эти растения не выделяют углекислый газ - основной парниковый газ, который способствует изменению климата. Щелкните здесь, чтобы увидеть, как работает градирня.

Многие атомные электростанции просто сбрасывают отработанное тепло в реку, озеро или океан вместо того, чтобы иметь градирни. Многие другие электростанции, такие как угольные электростанции, также имеют градирни или эти большие водоемы.Это сходство существует потому, что процесс преобразования тепла в электричество практически идентичен на атомных электростанциях и угольных электростанциях.

КПД

КПД атомной электростанции определяется так же, как и других тепловых двигателей, поскольку технически станция представляет собой большую тепловую машину. Количество электроэнергии, произведенной на каждую единицу тепловой мощности, дает установке ее тепловой КПД, и, согласно второму закону термодинамики, существует верхний предел того, насколько эффективными могут быть эти установки.

Типичные атомные электростанции достигают КПД около 33-37%, что сравнимо с эффективностью электростанций, работающих на ископаемом топливе. Более высокие температуры и более современные конструкции, такие как ядерные реакторы поколения IV, потенциально могут достичь КПД выше 45%. [6]

Дополнительная литература

Посетите следующие страницы, чтобы получить более подробную информацию о ядерной науке и ее роли в энергетической отрасли.

Ссылки

  1. ↑ МЭА (2014), «Мировые энергетические балансы», МЭА «Мировая энергетическая статистика и балансы» (база данных).DOI: http://dx.doi.org.ezproxy.lib.ucalgary.ca/10.1787/data-00512-en (Проверено в феврале 2015 г.)
  2. ↑ Wikimedia Commons [Online], доступно: https://upload.wikimedia.org/wikipedia/commons/5/58/Darlington_Nuclear_Generating_Station_panorama2.jpg
  3. ↑ NRC. (25 июня 2015 г.). Реактор с кипящей водой [онлайн], доступно: http://www.nrc.gov/reading-rm/basic-ref/students/animated-bwr.html
  4. 4,0 4,1 Дж.Р. Ламарш, А.Дж. Баратта, «Неядерные компоненты атомных электростанций» в журнале Introduction to Nuclear Engineering , 3-е изд., Верхняя Сэдл Ривер, Нью-Джерси: Прентис Холл, 2001, глава 4, раздел 3, стр. 129-133
  5. ↑ wikimedia Commons [Online], доступно: https://upload.wikimedia.org/wikipedia/commons/7/79/Dampfturbine_Montage01.jpg
  6. 6,0 6,1 6,2 Всемирная ядерная ассоциация. (30 июня 2015 г.). Nuclear Power Reactors [Online], доступно: http://www.world-nuclear.org/info/Nuclear-Fuel-Cycle/Power-Reactors/Nuclear-Power-Reactors/
  7. ↑ Майкл Каппель на Flickr [Online], доступно: https: // www.flickr.com/photos/m-i-k-e/6541544889
  8. ↑ Дж. Р. Ламарш и А.Дж. Баратта, «Энергетические реакторы и ядерные системы подачи пара» в журнале Introduction to Nuclear Engineering , 3-е изд., Upper Saddle River, NJ: Prentice Hall, 2001, глава 4, раздел 5, стр. 136-185
.

АЭС

Что такое ядерный реактор?

Ядерный реактор - это система, которая содержит устойчивые цепные ядерные реакции и контролирует их. Реакторы используются для генерации электричество, движущиеся авианосцы и подводные лодки, производство медицинских изотопов для визуализации и лечения рака, и для проведения исследований.

Топливо, состоящее из тяжелых атомов, которые расщепляются при поглощении нейтронов, помещается в корпус реактора (в основном большой резервуар) вместе с небольшим источником нейтронов.Нейтроны запускают цепную реакцию, в которой каждый атом, который расщепляется выпускает больше нейтронов, которые вызывают расщепление других атомов. Каждый раз, когда атом расщепляется, он выделяет большое количество энергия в виде тепла. Тепло отводится из реактора теплоносителем, который чаще всего является простым. вода. Охлаждающая жидкость нагревается и уходит в турбину, чтобы раскрутить генератор или приводной вал. Ядерные реакторы - это просто экзотические источники тепла.

На этой странице

Штифты топливные

Самая маленькая единица реактора - топливный стержень.Обычно это оксид урана (UO 2 ), но может принимать другие формы, включая торийсодержащий материал. Они часто окружены металлической трубкой (называемой оболочкой), чтобы продукты деления не улетали. в охлаждающую жидкость.

Топливная сборка

ТВС - это пучки твэлов. Топливо загружается и вывозится из реактора в сборе. Сборки имеют некоторый конструкционный материал, чтобы штифты были близко, но не соприкасались, чтобы осталось место для охлаждающей жидкости.

Полный ядро ​​

Это полноценное ядро, состоящее из нескольких сотен сборок. Некоторые сборки являются контрольными. Различные топливные сборки вокруг активной зоны содержат разное топливо. Они различаются по обогащению и возраст, среди других параметров. Сборки также могут отличаться по высоте, с разным обогащением. вверху ядра от тех, что внизу.

Реактор с водой под давлением

Самый распространенный тип реактора.PWR использует в качестве охлаждающей жидкости обычную старую воду. Первичное охлаждение вода находится под очень высоким давлением, поэтому она не закипает. Проходит через теплообменник, передача тепла вторичному контуру охлаждающей жидкости, который затем раскручивает турбину. Они используют оксид топливные таблетки, уложенные в циркониевые трубки. Они могли сжечь торий или плутониевое топливо.

Плюсы:
  • Сильный отрицательный коэффициент пустотности - реактор остывает, если вода начинает пузыриться потому что теплоноситель является замедлителем, который необходим для поддержания цепная реакция

  • Вторичный контур удерживает радиоактивные вещества вдали от турбин, упрощая обслуживание.

  • Накоплен большой опыт эксплуатации, а также разработаны конструкции и процедуры. были в значительной степени оптимизированы.

Минусы:
  • Охлаждающая жидкость под давлением быстро улетучивается при разрыве трубы, что требует наличия множества резервных систем охлаждения.
  • Невозможно создать новое топливо - подвержен «дефициту урана»

Реактор кипящей воды

Второй по распространенности, BWR во многом похож на PWR.Однако у них только одна охлаждающая жидкость. петля. Горячее ядерное топливо вскипает при выходе из верхней части реактора, где пар направляется к турбине, чтобы раскрутить ее.

Плюсы:
  • Более простая сантехника снижает затраты
  • Уровни мощности можно увеличить, просто увеличив скорость струйных насосов, подавая меньше кипяченой воды и больше умеренности. Таким образом, отслеживание нагрузки выполняется просто и легко.
  • Накоплен большой опыт эксплуатации, а конструкция и процедуры в значительной степени оптимизированы.
Минусы:
  • При наличии жидкой и газообразной воды в системе возможно множество странных переходных процессов, затрудняющих анализ безопасности
  • Теплоноситель первого контура находится в прямом контакте с турбинами, поэтому в случае утечки в топливном стержне радиоактивный материал может размещаться на турбине. Это усложняет обслуживание, так как персонал должен быть одет для работы в радиоактивной среде.
  • Невозможно создать новое топливо - подвержен «дефициту урана»
  • Обычно не работает при отключении электроэнергии на станциях, как в Фукусиме.

Канада Дейтерий-урановые реакторы (CANDU)

CANDU - это канадский дизайн, который встречается в Канаде и по всему миру. Они содержат тяжелой воды , где водород в h3O имеет дополнительный нейтрон (что делает его дейтерий вместо водорода). Дейтерий поглощает намного меньше нейтронов, чем водород, и CANDU могут работать, используя только природный уран вместо обогащенного.

Плюсы:
  • Требуется очень небольшое обогащение урана.
  • Может дозаправляться во время работы, сохраняя высокий коэффициент загрузки (при условии, что перегрузочные машины не ломаются).
  • Очень гибкие и могут использовать любой вид топлива.
Минусы
  • Некоторые варианты имеют положительный температурный коэффициент охлаждающей жидкости, что создает проблемы с безопасностью.
  • Поглощение нейтронов дейтерием приводит к образованию трития, который является радиоактивным и часто утекает в небольших количествах.
  • Теоретически может быть модифицирован для производства оружейного плутония немного быстрее, чем обычные реакторы.
См. Также
  • CANTEACH - Самый полный общественная образовательная и справочная библиотека по технологии CANDU.

Быстрый реактор с натриевым охлаждением

Эти реакторы охлаждаются жидким металлическим натрием. Натрий тяжелее водорода, что приводит к нейтроны движутся с более высокими скоростями (отсюда быстрых ). Они могут использовать металлическое или оксидное топливо и сжигать широкий разнообразие видов топлива.

Плюсы:
  • Может воспроизводить собственное топливо, эффективно устраняя любые опасения по поводу нехватки урана (посмотрите, что такое быстрый реактор?)
  • Может сжигать собственные отходы
  • Металлическое топливо и отличные тепловые свойства натрия позволяют пассивно безопасную работу - реактор безопасно отключится без работы каких-либо резервных систем (или людей вокруг), полагаясь только на физику.
Минусы:
  • Натриевая охлаждающая жидкость реагирует с воздухом и водой. Таким образом, утечки в трубах приводят к пожарам натрия. Их можно спроектировать, но это серьезный недостаток для этих реакторов.
  • Для полного сжигания отходов требуется оборудование для переработки, которое также можно использовать для распространение ядерного оружия.
  • Избыточные нейтроны, используемые для обеспечения способности реактора использовать ресурсы, могут тайно использоваться для производства плутония для оружия.
  • Положительные пустотные коэффициенты присущи большинству быстрых реакторов, особенно больших. Это проблема безопасности.
  • Не так много опыта эксплуатации накоплено. У нас всего около 300 реакторо-лет. опыта работы с реакторами с натриевым теплоносителем.

Реактор на расплавленных солях

Обновление! Теперь есть целая страница, на которой подробно обсуждаются MSR. Реакторы на расплавленной соли (MSR) - любимые реакторы в Интернете. Пока они уникальны тем, что используют жидкое топливо.

Плюсы:
  • Может постоянно разводить новое топливо, устраняя опасения по поводу энергоресурсов
  • Может отлично использовать торий, альтернативное ядерное топливо урану
  • Может поддерживаться в оперативном режиме за счет химического удаления продуктов деления, что исключает необходимость отключения во время дозаправки.
  • Отсутствие оболочки означает меньшее количество материала, поглощающего нейтроны, в активной зоне, что приводит к повышению эффективности нейтронов и, следовательно, к более высокому использованию топлива
  • Жидкое топливо также означает, что структурная доза не ограничивает срок службы топлива, позволяя реактору извлекать очень много энергии из загруженного топлива.
Минусы:
  • Радиоактивные газообразные продукты деления не содержатся в маленьких штырях, как в обычных реакторах. Таким образом, если есть нарушение условий содержания, могут выделяться все газы деления, а не только газы. из одной крошечной булавки. Это требует таких вещей, как тройное резервирование и т. Д., И с ними можно справиться.

  • Наличие онлайн-перерабатывающего предприятия с поступающим предварительно расплавленным топливом - распространение беспокойство.Оператор может перенаправить Pa-233, чтобы обеспечить небольшой поток почти чистого оружейного U-233. Кроме того, весь запас урана может быть отделен без особых усилий. В своей автобиографии Элвин Вайнберг объясняет, как это было сделано в Национальной лаборатории Ок-Ридж: «Это был замечательный подвиг! Всего за 4 дня все 218 кг урана в реакторе было отделено от сильно радиоактивных продуктов деления и его радиоактивность снизилась в пять миллиардов раз ».

  • Очень небольшой опыт эксплуатации, хотя успешный испытательный реактор эксплуатировался в 1960-х.

Высокотемпературный реактор с газовым охлаждением

В HTGR

используются маленькие топливные гранулы, скрепленные либо в виде шестиугольных брикетов, либо в более крупные гальки (в призматическом и гальки-грядки).Газ, такой как гелий или диоксид углерода, быстро пропускается через реактор для его охлаждения. Из-за их низкой удельной мощности эти реакторы рассматриваются как перспективные для использования ядерной энергии за пределами электричество: на транспорте, в промышленности и в жилищном режиме. Они не особо хороши просто производя электричество.

Плюсы:
  • Может работать при очень высоких температурах, что обеспечивает высокий тепловой КПД (около 50%!) И способность для создания технологического тепла для таких вещей, как нефтеперерабатывающие заводы, установки по опреснению воды, водородные топливные элементы производство и многое другое.
  • Каждый маленький камешек топлива имеет свою собственную герметизирующую структуру, добавляя еще один барьер между радиоактивный материал и окружающая среда.
Минусы:
  • У высокой температуры есть и плохая сторона. Материалы, которые могут оставаться прочными при высоких температурах и с большим количеством нейтронов, пролетающих через них, их трудно найти.
  • Если газ перестанет поступать, реактор очень быстро нагреется. Необходимы резервные системы охлаждения.
  • Газ - плохой хладагент, поэтому требуется большое количество хладагента для относительно небольшой мощности. Следовательно, эти реакторы должны быть очень большими, чтобы производить энергию с такой же скоростью, как и другие реакторы.
  • Не такой большой опыт эксплуатации

© Whatisnuclear.com 2007-2020 | CC-BY-NC

.

Смотрите также